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Evaluation of pressure and volumetric modules in melted systems

In the article there were estimated the pair potential and pressure of bulk modules in molten systems. There
are given appropriate formulas for calculating the compressibility of electron melts. The polytherms of com-
pressibility for selenium, tellurium, germanium and silicon are calculated. For the calculation of bulk mod-
ules, melts of metals and semiconductors are considered as a two-component liquid consisting of ions and
electrons. According to the virial theorem, a part of the pressure associated with the dynamics and interaction
of the ion subsystem is estimated. Since the isothermal bulk modulus is a static exponent, we determined it
under conditions where the pressure and volume in the system change slowly, and the temperature of the melt
changes very slowly or remains constant. The adiabatic bulk modulus, i.e. dynamic, was determined under
conditions of heating of the melt caused by compression. Under adiabatic compression a change in
temperature and pressure is allowed. This phenomenon occurs in fast processes, i.e. when there is no heat
exchange due to the inertia of the thermal properties of the melts. This behavior of adiabatic compressibility
is characteristic of metallic melts. We have found that the instantaneous dynamic modulus calculated in the
pair approximation model is identical to the dynamic modulus calculated in the full theory in the second or-
der, and also differs markedly from the statistical module. The explanation of this fact consists in neglecting
the members of the electron-ion interaction of a higher order than the second, and also the unsatisfactory
modification of the pseudopotential by means of an amendment to the Hartree energy. We obtained the rela-
tionships that make possible to calculate the compressibility of melts. Theoretical calculated polytherms of
compressibility for semiconductors are given in the article.

Keywords: cluster structure, polyterms of compressibility, semiconductor, function of radial distribution,
structural factor, adiabatic compressibility, paired potential, of the pressure of volumetric modules.

The molten metals and their alloys are widely used in the national economy. This interest is especially
great in heating engineering, nuclear energy technology, electronic engineering and in other industrial sec-
tors, as well as for meeting the needs of the metallurgical production and in the engineering design of new
technology in this field. The greatest attention devoted to the molten metals is in the metallurgy, which is
conditioned by the necessity of passing the liquid phase before crystallization. The practical significance of
the expected results of the work lies in the possibility of using new ideas about the structure of melts, based
on computer simulation, which allows modeling the properties of the melt at the atomic level. This is im-
portant for the development of optimal technological processes in non-ferrous and ferrous metallurgy, in
pyrometallurgy in general, occurring at the phase interface, as well as for similar processes in the technology
of inorganic materials (silicon, selenium, tellurium, germanium, etc.), including number for nanocoatings,
films and other special technologies.

It is necessary to consider some correlations for the calculation of the solid modules in the molted sys-
tems. Metal melts and melts of semiconductors can be considered as double-base liquid consisting of ions
and electrons, then according to the virial theorem, a part of pressure which is connected with dynamics and
interaction of ionic subsystem can be evaluated, i.e.
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where K — is kinetic energy.
For the calculation of the total pressure per size P,

> . 1t is necessary to add the pressure, which is created
by the fermi-gas that is equal to the sum of the derivative energy Ey(Q2) and Ep(€2) with the opposite sign
P, =—~(9E,/9Q) ~ (E, /3Q) .

One may rewrite the pressure P,

ion

in the integral form, containing explicitly dependence on the struc-
ture g(R). If we represent the kinetic energy through the temperature, then
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The derivative —Z in the expression for pressure is specific for the melts so far as ¥’

.7 (R.Ry) is not
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only the distance function but also the function Q = (R ). It points out that the result is an effect of dielec-

tric dependence of penetration function, which defines indirect interaction of ions from the compactness of

shielding electronic subsystem nz , at the same time #n = N = 3 . The calculation done for Na [1] shows

4TzR;

that thecomponents P,, and P which are parts of pressure P, , have the values close to zero.

If one neglects changes of the pair potential V,, (R) of solidity during the pressure estimation, the re-

sult turns out to be overstated. It follows that in the models with stiff fixed compactness which reproduce
complex N,Q,T one have to do with the great positive pressures. Such situation is observed while calculat-

ing the force coefficients in a crystal. The shown conclusion doesn’t indicate the inexactness of mentioned
models for a hot metal. The equilibrium should be considered simultaneously for its both subsystems — ion-
ic and electronic, as far as the positive pressure of ionic subsystem defines bulk effects in the electronic sub-
system.

As is known, in the theory of condensed systems there is «compressibility sums rule» which describes
how much up-build model of the system is self-consistent. The reciprocal value of the volumetric module is
equal to the mentioned compressibility. These sizes are important at the consideration of the property of con-
densed systems. In the crystal the quiescent volumetric module 3, equal to the second derivative energy by

volume, must be consistent with the dynamic bulkmodulus B, , which is a combination of the elastic con-

stants calculated from the phonon dispersion relation by the «long» wave method [2].

Indicated correlation is defined by the interatomic interaction with the constant volume and doesn’t de-
pend on the volume-dependent components of energy. In this self-consistent model correlation between the
form of the effective interaction if Q = const and derivatives of the energy in volume, contains mentioned
components and defines the «compressibility sums ruley.

As is shown in the work [3], the properties are examined well in case of crystalline Na. Subsequently it
turned out that the sum rule is not satisfied because of the non-self-consistency of the metal model construct-
ed on the basis of the assumption of perturbation theory in the second order in terms of the pseudopotential.

It gives the reason to assert that the components which emerge in the dynamic matrix in the third and
fourth orders in the long-waved limit give the contribution of the second order. This inconsistency results
from the inclusion of this contributions while calculating the statistic modules and neglecting them in dy-
namic modules. But the inclusion of these highest terms at the dynamic arraying, which correspond to the
triplet and quadrupole interaction, is possible in essence [2]. Conducted calculations with the crystalline Na
[3] have shown that it is necessary to vary Hartree energyfor bringing into concordance of evaluable static
module to the experimental (3. But in such variation the dynamic modulus f,,, which is well consistent

with the experiment, turns out to be too overstated.
The feasible explanation of this is in the fact that the components of the third and the fourth orders be-
come more important in the dynamic matrix, in the field with the little ¢ . In the present case to preserve the
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consent with the experiment there is necessary the modification of the pseudo-potential itself in this men-
tioned field. In such case the Hartree energy variation will correspond to this modified pseudo-potential.
The statistic isothermal modulus of flexibility of the liquid phase is the following pressure derivative by

volume:
oP

=-Q 3

B, = [ 5 Qj 3)
The dynamic isothermal modulus is identified by the long-wave by the structural factor range S(q):
kT

=—— 4

Bdm Q S ( 0) ( )

Both of these modules must match in the consistency theory. However, application of the perturbation
theory in the second order on the pseudo-potential and definition of the dynamic modulus through S(g) in

the model with the potential that is independent on the compactness will lead to the diversions like in the
case of the crystal. The exact formula for the static modulus is like this:

= = = = kT
Bst:Bian+Bftp+Be+E’ (5)
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where D is a statement which is input to shorten the wrltlng.
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The physical value of the derivatives remains the same like in the case of the equation (2). Summing up
all, one may write:
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One may write the analogous formula for the dynamic modulus B 4 » as long as it is also calculated in
the model with the potential independent on the compactness. Since the model is self-consistent, the dynamic
and static modules calculated in it coincide. The analogous conclusion may be done even in the case of cal-

culation of the crystal compressibility, which is realized in the reciprocal space. Thus, it is expected the fol-
lowing correlation to be accomplished:

B, =

Bdin = B:on + kT/Q > (8)
where
B, = Dg(R)—V,.dR+ R)—V_dR.
an 18Q'[ g( )aR eff 18Q'l.g( )aR eff
The equation (4) gives more simple formula for B 4in - The equivalence of the equations (4) and (6) is in

essence particular case of the matched condition between n and n+1 the partial distribution functions. The
equation (8) doesn’t contain the direction to the calculation of the statistic calculation (5). However, in the
calculations on the equation (5) one has to face the following problems: for the calculation such the function

of the radial distribution is required g(R) which would coincide with the complete theory, i.e. for that the
identity was realized:

$(0)=[{[g(R)-1]/Q}dR, ©9)

equal — . It requires the consideration of the components of the third and the fourth orders in the field of

st

the minor g—s. As these components coincide to the calculation of the effective interactions between the
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tree and four ions, it is an awkward task. It is therefore natural to make the assumption that the function g(R),
calculated in a computer experiment with a pair effective potential at Q = const, does not lead to large errors,
excluding the long-wave region.

Just this very function g(R) is put in the equation (5) and (8); the equations (5) and (8) require the val-
ues of the derivatives of functions ¢(R) in volume which can be taken by the repetition of the computer ex-

periment with different source compactness.

It is therefore natural to make the assumption that the function g(R), calculated in a computer experi-
ment with a pair effective potential at {2 = const, does not lead to large errors, excluding the long-wave re-
gion.

The present situation is the extreme laborious task. So it is more convenient to confine with the ap-
proach:

g(R.R,T) = éf(R/RS’T) : (10)

where f(R/Ry,T) is the function which provides similar change of the structure with the compactness in at

the constant temperature.
However, the assumption (10) is correct for the crystal structure, but is not obligatory for a liquid. That
is why this approach follows to:

Rog(R/Ry,) dg(R/R,)
Dg(R) = 52+ R $2=-3g(R). 11
g(R) R Ty g(R) (1)
Taking into account the derived result let’s rewrite the equation (4) as in this way:
_ 1 ,
. =—— | g(R)(D"-3D)V _(R)dR . 12
Bor =g ] (RN W R) (12)

The value for B, , = 0,097 which has been found without variation of Hartree energy conforms with ex-
perimental which is equal to 0.0973 as in case of the crystal. The value which is determined by the computer
experiment amounts 0.032+0,002 that leads to f8,.Q = 0.078+0.005 .

Equation (10) indicates that the modulus obtained by Eq. (12) is an «instantaneous» bulk modulus,
which, as shown in [4], is the upper limit of the adiabatic bulk modulus and is approximately 10 % larger
than the isothermal bulk modulus Na. The results which are given in the work coincide with above-
mentioned ones. Besides that, the low differences are indicative of that the approach (10) is acceptable for
such differences. Further one may calculate with the help of the equation (12) in the same approach. The var-
iation of Hartree energy gives a result of 0.105 and it also coincides with the experiment, if we take into ac-
count the upper limit of the real compressibility. In case of crystalline state the correction of Hartee energy
gives the considerable contribution that is necessary to achieve the concordance with the experiment.

The accuracy which is taken from the calculation as a whole is note worse than for the crystal [5] and
can be explained approximately in the same way like before. One of the possible explanations applies to the
substantial modification of the pseudo-potential at low g — s, what about it was told above. It is corroborated
by the calculation with the components of the third and fourth order, i.e. including the triplet and quadrupole
effective interactions. It is corroborated by the calculated polyterms of adiabatic compressibility for the lig-
uid lead (Fig. 1). Adiabatic compressibility in this process increases monotonously. Such the behavior of the
compressibility basically is typical for the metal melts. Thus, one may conclude that the instantaneous dy-
namic modulus, which is calculated in the modulus of pair approach, is identical with the dynamic modulus,
that is calculated in the complete theory on the second order, and also is distinctly differs from the static
modulus, on the one hand, and from that one which is calculated in the theory of the second order, on the
other hand. The first of them matches to the isometric experimental modulus, while the second one refers the
correction to the Hartree energy. Thereby, the situation doesn’t differ from that which was used at the ana-
logical calculations for the crystalline condition of a substance [6].

The possible explanation is in the neglect of the components of electron-ion interaction of the higher
order than the second one, also in the inadequacy of pseudo-potential modification by means of the correc-
tion to the Hartree energy that leads to the correct result only in the long-wave limit. The above relations en-
able us to calculate the compressibility of melts. The theoretical calculated polyterms of the compressibility
to selenium, tellurium, germanium and silicon are shown on the Figures 1-5.
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Figure 5. The compressibility polyterms of the germanium melt

The model of the micro-heterogeneous melt with the clusters of the similar size at fixed temperature is,
certainly, idealized. In fact, in the real melt there can be the clusters of various sizes. The existence of the
clusters not only close to the crystallization temperature, but also at the higher temperatures, in the melts of
semimetals and semiconductors is conditioned on the presence in them the two types of the chemical
bond — covalent and metallic [1].

The covalent bond type that is present and predominant in the crystal, while its passing to the liquid
condition can disappear neither just after melting, nor at the further heating. These bonds are laid on the
atomic nature itself, which constitute semimetals and semiconductors in the outer electron shell of the atoms
and cannot disappear completely at any aggregate substance condition. The question only is in their manifes-
tation degree. If these bonds exist together with the bounds that greatly differ in their energy, then they mani-
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fest essentially. The example is the molecular liquids. If these bonds are dipped into the matrix of the other
bond types, which is not much differ from them energetically, then their individuality levels on the equalized
background of those allied by their energy, but differ in the bond nature, for example, metallic.

Thus, the double-structured melt cluster model (the model of the mixture of cluster and atomic compo-
nent), reflecting the opportunity of equilibrium existence of the two types of chemical bound (covalent and
metallic bonds), different by their nature, but close by their solidity (thermodynamic aspect) and the two
mechanisms of the cluster decay (kinetic aspect) allow to explain quite right the main types of the experi-
mental and theoretical polyterm compressibility in the melts of the semimetals and semiconductors.

The Variety of the forms of polyterms compressibility in the electronic melts requires typification, or
their analysis allows clearing the mechanism of the aggregation processes and dissolution of extensive ob-
jects in the melts.
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BaakpIThLIFaH KYiiejepaeri KbICHIM/IBI 3KIHe KoJIeMIiK MOIYJIbAapabl 6arajay

Makanaza GanKbITBUIFaH JKyHenepleri KeJaeMIiK MOIYNbJIep KbICHIMBI MEH JKYITBIK oJeyeTi OarajaHfraH.
DeKTpOHABIK OaNKbIMaIapIblH CHIFBUIFBIITHIFBIH €CeNTey YILIiH caiikec Gopmynanap kenripiaren. Cenew,
TEIUTyp, TepPMaHUM JKOHE KPEMHHH YIIIH CHIFBUIFBIIITHIK IOJUTEpMalapbl ecentesred. Kesemuik
MOIyNIBICpAIH ecedl YHIH MeTaxgap MeH SKapThUIadeTKisrimrep OajKbIMalapsl HMOHAAp MeH
JNIEKTPOHJAPAH TYPATHIH €Ki KOMIOHEHTTI CYHBIKTBIK peTiHJe KapacThIpbUIFaH. Bupman Teopemacs
OoMbIHIIA, HOHJIBIK KillipeK JKYHEeHIH JUHAMHKAachl MEH ©3apa opeKeTTecyiMeH OallIaHBICTHI KBICHIM OOliri
OarananraH. KexeMik cepmiMIUTIKTIH H30TEPMUSIIBIK MOIYJII CTATHKAIBIK MOIYJIb OOJIBIT TaObLIFaHIBIKTaH,
oHBI 013 JKyifezeri KbICBIM MEH KejieM Oasiy e3repreH jxarjaiia, an OajkbIMa TeMmIepaTrypacel ete Oasy
e3repreH/ie HeMece TYPAKThl OOJIBIT KaJFaH XKaraaiaa taybin anipik. Kememaik ceprmimMaimikTiH aanabaTThiK
MOZyJi, SFHM JWHAMHKAJIBIK, CHIFYMEH TYbIHIAFaH OalKbIMaHbl KbI3JAbIPY JKAF[aiblHAA aHbBIKTaJ/IbL.
AnnabatThIK ChIFY Ke3iHIe TeMIlepaTypa MEH KbICBIMHBIH ©3repici OpbIH anabl. by KyObUIbIC Te3 XKypeTiH
ypaicTep Ke3iHme, SFHHM OaJKbIMAJIapABbIH KBUIYJIBIK KACHETTEpiHIH HMHEPUHOHJBIFEl CalapblHAH IKBLLY
alrMacy OonMaraH Ke3[ie OpBIH amaabl. AQuabaTTHIK CHIFBUIFBINTHIKTBIH MYHAAll CHIIaTBl MeTail
OankpIMamapra TOH. ABTOpJIAp SKYNTHIK JKYBIKTay MOJETIHJE ECENTEeNTeH JIE3MiK ANHAMHUKAIBIK MOMYIb
eKIHII TOPTINIEH TOJBIK TEOpHUsa €CeNTeNreH NUHAMHUKAIBIK MONYIbMEH Oipmeil eKeHAIriH aHBIKTaJbl,
COHBIMEH Karap CTAaTHKAaJIbIK MOIYJIbICH eyieyli e3remeriri 6ap. by ¢akt HerypibIM JKOFapbl TOpTimTeri
UEKTPOH/IBIK-HOH/IBIK ©3apa dPEKeTTeCy MYIIENEpiH eleMey, COHbIMEH KaTtap XapTpu SHEPrusACchlHA TY3ETy
apKbUIbI TICEBIONOTEHINAT MOAUGUKALUACHIHBIH KaHaraTTaHOAaybIMEH TYCIHIipijeai. ABTopiap IIBIFaphbI
ajFaH KaTblHAC OaJKbIMaJapIblH CHIFBUIFBIITHIFBIH €CENTeN alyFa MyMKiHIik Oepeni. JKapreunaierkis-
rilTep YIIiH CHIFBUIFBIITHIKTHIH TCOPUSUIBIK €CENTENTeH MOINTepMallaphl JKYMBICTa KeJITIpUIreH.

Kinm ce30ep: kiacTepiik KYpBUIBIM, CBHIFBUIFBIITHIK ITOJUTEPMANAPhI, JKapThUIAHOTKI3TIIITED, PagHaiIbl
YJIECTipiM (YHKIHSACHI, KYPBUIBIMIBIK (aKkTop, aanadaTalblK ChIFBUFBIIITHIK, KYITHIK TOTCHIIUAI, KOJIEMIIK
MOy IbJIAPIBIH KBICHIMEL.
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A.3. Ucarynos, C.II. Kaxxukenona, I'.C. [llanxosa, I'.ILI. MaxmetoBa, JI.)K. KackimoBa

Ouenka 1aBjeHUsi U 00beMHBIX MOy el B pacijaBJeHHbIX CHCTEMAX

B crarbe oLieHEeHBI MapHBIN MOTEHIMAT U AaBJICHUE 00BEMHBIX MOIYJICH B pacIUIaBICHHBIX cucTeMax. [Ipu-
BEJICHBI COOTBETCTBYIOIIUE (POPMYJIIBI JUIS pacueTa CKUMAaEeMOCTH AJICKTPOHHBIX PacIlIaBOB. BeI4mcIIeHbI 10~
JUTEPMBI CKHMACMOCTH IS CEJICHA, TEJUTypa, TepMaHus 1 kpeMHus. [ pacuéra 00bEMHBIX MOIyJIeH pac-
IJIaBbl METAJUIOB U IMOJIYIIPOBOJHUKOB PACCMOTPEHBI KaK JABYXKOMIIOHEHTHAsl JKHUJIKOCTb, COCTOSIILAsI U3 HO-
HOB U 3JeKTpoHOB. 1o Teopeme Bupuana oleHeHa YacTh AaBJICHU, CBA3aHHAs C TMHAMUKON U B3aMOeiicT-
BHEM HOHHOM NoJCHCTEMbl. Tak Kak U30TEPMUYCCKHI MOIYJIb OOBEMHOHN yIIPYrOCTH SBISETCS CTATUYCCKUM
MIOKa3aTeneM, OH ONpeesieH HAMHU B YCJIOBHAX, KOTJa aBJIeHHE U 00BbEM B CHCTEME N3MEHSIOTCS MEIUICHHO,
a TeMIeparypa paciuiaBa O4eHb MEUIEHHO U3MEHSETCS HIIM OCTAeTCs MOCTOSHHOM. AnadaTn4eckKuii MoLyib
00BEMHOHN YIIPYTOCTH, T.C. JHHAMHYECCKUHN, ONPE/ICICH HAMU B YCIIOBUSX HarpeBaHUs paciliaBa, BHI3BAHHOTO
cxkatreM. [Ipn agmabaTHYeCKOM CKATUH JIOITYCKAaeTCsl U3MEHEHNE TeMIepaTypsl U JAaBieHus. JJaHHOe sBIie-
HHUE MMEET MECTO MPHU OBICTPOIPOTEKAOIINX IPOIeccaX, T.€. KOTJa OTCYTCTBYET TEIUIOOOMEH H3-3a WHEPIIH-
OHHOCTH TEIIOBBIX CBOWCTB PacIUIaBOB. Takoe MOBEICHHE auadaTHIecKOl CKUMAEMOCTH XapaKTEpHO s
METAUTMYECKUX PACIIaBOB. ABTOPHI YCTAHOBUJIM, YTO MTHOBEHHBIN AUHAMUYECKUII MOAYJb, PACCUUTAHHBII
B MOJEIH HapHOTO NMPUOIMKEHNS, HICHTHYEH JUHAMHYECKOMY MOAYJIIO, BEIYMCICHHOMY B IIOJHOW TEOpUH
BO BTOPOM IOPSIIIKE, @ TAKXKE 3aMETHO OTJIMYACTCS OT CTATHCTHIECKOTo MoayJist. OObsiCHEHHE JaHHOTO (aKTa
COCTOUT B MPEHEOPEKEHUH YWICHAMH 3JICKTPOHHO-MOHHOTO B3aUMOAEHCTBUS 0oJiee BHICOKOTO MOPSAIKA, YeM
BTOPOI, a TaKXKE HEYJOBJICTBOPUTEILHOCTHIO MOAU(DUKAINY TICEBONOTEHIIANIA TIOCPEIICTBOM TOTIPABKU K
sHeprun Xaprtpu. [loiryuyeHHbIE aBTOpaMH COOTHOIIEHUS MO3BOJISIIOT BBIYMCIUTH CXKMMAaeMOCTb PacIlIaBOB.
TeopeTnyeckue BRIYUCICHHBIC TIOJUTEPMBI CKIMACMOCTH JUTS TIOJTYIPOBOJIHUKOB IIPUBEIICHEI B pPa0OTe.

Kniouesvie crosa: xactepHasi CTpyKTypa, HOIUTEPMBI CKIMaeMOCTH, TTOJIYIPOBOJHUKY, (DYHKIHS Paadallb-
HOTO paclpeeNeHus, CTPyKTYpHbIH (akTop, annadaTnueckas CKUMaeMOCTb, IIAPHbIA OTEHIMAI, JABICHUE
00BEMHBIX MOAYJICH.
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