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Salt tolerant acrylamide-based quenched polyampholytes for polymer flooding 

In our previous papers [1, 2] we considered the behavior of linear and crosslinked polyampholytes based on 
fully charged anionic monomer — 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) and 
cationic monomer — (3-acrylamidopropyl)trimethylammonium chloride (APTAC) in aqueous-salt solutions, 
swelling and mechanical properties. In the present paper we report the applicability of salt tolerant amphoter-
ic terpolymers composed of AMPS, APTAC and acrylamide (AAm) in enhanced oil recovery (EOR). The 
amphoteric terpolymers of different compositions, particularly [AAm]:[AMPS]:[APTAC] = 50:25:25; 
60:20:20; 70:15:15; 80:10:10 and 90:5:5 mol.% were prepared by free-radical polymerization, identified and 
their viscosifying ability with respect to reservoir saline water (salinity is 163 g⋅L-1) at 60 °C was tested. It 
was found that due to polyampholytic nature, the AAm-AMPS-APTAC terpolymers exhibited improved 
viscosifying behavior at high salinity water. As a result, the appropriate salt tolerant sample 
[AAm]:[AMPS]:[APTAC] = 80:10:10 mol.% was selected for polymer flooding experiments. Polymer flood-
ing experiments on high permeable sand pack model demonstrated that only 0.5 % oil was recovered by am-
photeric terpolymer. While injection of polyampholyte solution into preliminarily water flooded core sample 
resulted in the increase of oil recovery up to 4.8–5 %. These results show that under certain conditions the 
amphoteric terpolymers have a decent oil displacement ability. 

Keywords: polyampholyte terpolymers, viscosifying ability, high permeability, homogeneity, porous media, 
oil viscosity, incremental oil recovery (IOR), reservoir heterogeneity conditions. 

 

Introduction 

Oil and gas sector remains one of the main components of the economy of Kazakhstan, and its devel-
opment will determine the prospects for the state economy. The problem of enhanced oil recovery (EOR) is 
especially important for Kazakhstan to enter into the world’s top five oil exporters. 

Nowadays many water-soluble polymers have been intensively developed and explored as viscosity-
enhancing and flocculating agents, food additives, etc. [3–5]. Polyacrylamide and its derivatives have been 
successfully employed in wastewater treatment, papermaking and oil industry due to their thickening ability, 
flocculation and rheological behaviors [6–8]. 

The most widely used synthetic EOR polymer is polyacrylamide (PAA) and its derivatives [9–12]. This 
polymer is usually used in hydrolyzed polyacrylamide (HPAM) form to achieve higher viscosity within a 
certain range of brine salinities [13]. Unfortunately, HPAM may undergo a severe hydrolysis and precipitate 
at high temperature and brine salinity [14]. In this context, designing suitable polymers for EOR from high-
temperature and high-salinity reservoirs is a challenging task. In fact, relatively high oil viscosity and brine 
salinity are common phenomena for Kazakhstani oil reservoirs. For example, the viscosity of Karazhanbas 
field oil may be higher than 350 cp, while brine salinity of Zhetibay and Moldabek fields may exceed 
150 g·L-1. In polymer flooding technology, stable oil displacement is realized through the reduction of 
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oil/water viscosity ratio by using HPAM and other polymers [15]. Unfortunately, the high salinity of make-
up water requires higher polymer concentrations to provide a certain viscosity value [16], which may in-
crease the production cost of recovered oil. Moreover, high water salinity may cause polymer precipitation in 
the porous media of a rock, which results in permeability damage [14] and polymer waste. In order to over-
come these problems, we suggest to use as viscosifying agent (or water thickeners) the tailor made amphoter-
ic terpolymers AAm-AMPS-APTAC that possess the thermal stability and are able to swell and increase the 
viscosity in saline water due to specific, so called “antipolyelectrolyte” effect [17, 18]. Previous studies  
[19–21] indicated that many polymers containing AAm and ionic monomers can be used for EOR process 
[22–31]. 

In this work a series of ternary polyampholytes with different molar concentrations of AAm, AMPS, 
and APTAC were synthesized and tested as oil recovery agent by using sand pack model and artificial high 
porosity core. The obtained results are perspective for development of novel salt- and temperature tolerant 
amphoteric terpolymers for EOR. 

Experimental 

Materials 
Acrylamide (AAm, purity ≥98.0 %), 2-acrylamido-2-methylpropanesulfonic acid sodium salt (AMPS, 

98 wt.% in water) and (3-acrylamidopropyl) trimethylammonium chloride (APTAC, 75 wt.% in water), and 
ammonium persulfate (APS, 99 % purity) were purchased from Sigma-Aldrich Chemical Co. and used with-
out further purification. 

To provide the sand pack flooding experiments, 250–500 μm sand grains were packed into 8.3 cm 
length and 4.3 cm diameter steel cylinder (Fig. 1a, b). The porosity and permeability of the sand pack were 
equal to 44 % and 16 Darcy, respectively. The model was saturated with 100 g·L-1 East Moldabek 
(well#2092 M-II) brine and East Moldabek oil (well# 2027 M-III-U-I). The viscosity and density of oil sam-
ple were equal to 138 cp and 0.8916 g·cm-3 at 25 °C. Brine water solution was injected into the sand pack 
model at the rate of injection 0.1 cm3⋅min-1. 

The core flooding experiments were carried out with core sample of 4.4 cm length and 2.9 cm diameter 
with permeability 5 Darcy (Fig. 1c). The artificial high porosity core sample with pore volume 24.12 cm3 
(porosity is 83 %) and Karazhanbas oil (well# 1913) were used. Viscosity and density of selected oils were 
equal to 420 cp and 0.93 g·cm-3 at 30 °C and 64 cp and 0.907 g·cm-3 at 60 °C. Brine solution with concentra-
tion of 163 g·L-1 was used for core flooding test. 0.5 % polymer solution was injected into the core at the rate 
of 1 cm3⋅min-1. 
 

 
a b c 

Figure 1. Sand pack (a, b) and artificial high porous core (c) 

Methods 
1H NMR spectra of AMPS-APTAC-AAm terpolymers in D2O were registered on impulse Fourier NMR 

spectrometer Bruker 400 MHz (Bruker, Germany). 
The sand pack and core flooding experiments were conducted with the help of special core flooding set 

up "УИК-C(2)" (Russia). 
The viscosity of polymer solutions was determined by glass capillary viscometer with diameter 

1.47 mm. Oil density and viscosity were determined by Stabinger viscometer. 
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Conclusions 

Salt tolerant acrylamide-based quenched polyampholytes were synthesized from acrylamide (AAm), 
anionic (AMPS) and cationic (APTAC) monomer units by free radical polymerization. The compositions of 
amphoteric terpolymers were established by 1H NMR spectroscopy. Amphoteric terpolymers showed a good 
solubility in oilfield water with the salinity 163 g·L-1. Among the terpolymers the highest viscosity in brine 
exhibited amphoteric terpolymer AAm-AMPS-APTAC with composition 80–10–10 mol.%. Sand pack and 
core flooding experiments were carried out with 0.5 % of AAm-AMPS-APTAC (80–10–10 mol.%) solution 
in 163g·L-1 brine for Karazhanbas oil at 60 °C. In sand pack flooding experiments, the injection of different 
AAm-AMPS-APTAC recipes resulted in only 0.5 % ORF increase. However, in the core flooding tests the 
injection of AAm-AMPS-APTAC (80–10–10 mol.%) solution resulted in 4.8–5 % ORF increase. The in-
crease of pressure drop during polymer flood indicated improvement the mobility ratio in comparison with 
water flooding. 

This research has been funded by the Science Committee of the Ministry of Education and Science of 
the Republic of Kazakhstan (Grant No. AP08855552). 
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Тұзғатөзімді акриламид негізіндегі жоғары зарядталған  
полиамфолиттерді жер қыртысына айдау 

Алдыңғы мақалаларда авторлар толығымен зарядталған анионды мономер — 2-акриламидо-2-метил-
1-пропансульфон қышқылы натрий тұзы (АМПС) жəне катионды мономер — (3-акриламидо-
пропил)триметиламмоний хлориді (АПТАХ) негізінде түзілген сызықты жəне айқаса байланысқан 
полиамфолиттердің сулы-тұзды ерітінділердегі ісінуі жəне механикалық қасиеттерін қарастырды. Осы 
мақалада мұнай өндіруді жақсартылған қалпына келтіру кезінде АМПС, APTAХ жəне акриламидтен 
(AAм) тұратын, тұзғатөзімді амфотерлі терполимерлердің қолданылу мүмкіндігі туралы хабарланған. 
Əр түрлі құрамдағы амфотерлі терполимерлер, атап айтқанда [AAм]:[AMПС]:[APTAХ] = 50:25:25; 
60:20:20; 70:15:15; 80:10:10 жəне 90:5:5 мол.% бос радикалды полимерлеу əдісімен дайындалды, 
анықталды жəне олардың 60 °С температурада тұзды суға (тұздылығы 163 г⋅л-1) қатысты тұтқырлық 
қабілеті тексерілді. Амфотерлі терполимерлер полиамфолиттік сипатта болғандықтан, AAм-AMПС-
APTAХ терполимерлері тұздылығы жоғары суларда жоғары тұтқырлық қасиеттерін көрсетті. Соның 
нəтижесінде, тұзғатөзімді [AAм]: [AMПС]:[APTAХ] = 80:10:10 мол.% үлгісі полимерді айдау 
тəжірибесі үшін таңдап алынды. Полимер ерітіндісін айдау тəжірибесі жоғары өткізгіштігі бар құмды 
модельде амфотерлі терполимердің көмегімен тек 0,5 % мұнайдың алынған шығымын көрсетті. 
Алдын-ала сумен қаныққан керн үлгісі арқылы полиамфолит ерітіндісін айдау барысында мұнай 
өндірудің жоғарылауы 4,8–5,0 % дейін артты. Бұл нəтижелер амфотерлі терполимерлердің белгілі бір 
жағдайларда мұнайды ығыстыру қабілетіне ие екендігін көрсетеді. 

Кілт сөздер: полиамфолит терполимерлері, тұтқырлық қабілеті, жоғары өткізгіштігі, біртектілігі, 
кеуекті орта, мұнай тұтқырлығы, мұнай өндірудің жоғарылауы, қабаттың біртектілігі. 

 
Н. Мухаметгазы, И.Ш. Гусенов, А.В. Шахворостов, С.Е. Кудайбергенов  

Солеустойчивые сильнозаряженные полиамфолиты  
на основе акриламида для полимерного заводнения 

В предыдущих статьях авторами рассмотрены поведение линейных и сшитых полиамфолитов на ос-
нове сильнозаряженного анионного мономера — натриевой соли 2-акриламидо-2-метил-1-про-
пансульфоновой кислоты (АМПС) и катионного мономера — (3-акриламидопропил)триметил-
аммоний хлорида (АПТАХ) в водно-солевых растворах, набухание и механические свойства. В на-
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стоящей статье сообщается о применимости солестойких амфотерных терполимеров, состоящих из 
АМПС, АПТАХ и акриламида (ААм) для полимерного заводнения. Амфотерные терполимеры раз-
личного состава, а именно [ААм]:[АМПС]:[АПТАХ] = 50:25:25; 60:20:20; 70:15:15; 80:10:10 и 
90:5:5 мол.%, были приготовлены свободнорадикальной полимеризацией, идентифицированы и их за-
гущающая способность протестирована применительно к пластовой (соленой) воде нефтяного резер-
вуара (соленость 163 г⋅л-1) при 60 °C. Найдено, что благодаря полиамфолитной природе терполимеры 
ААм-АМПС-АПТАХ показали улучшенный загущающий эффект при высокой солености воды. В ре-
зультате этого для экспериментов по полимерному заводнению выбран солестойкий образец 
[ААм]:[АМПС]:[АПТАХ]: = 80:10:10 мол.%. Полимерное заводнение на высокопроницаемой песча-
ной модели показало, что только 0,5 % нефти извлекается амфотерным терполимером. Тогда как за-
качка раствора полиамфолита в образец керна, предварительно насыщенного водой, приводит к уве-
личению извлечения нефти до 4,8–5,0 %. Эти результаты показывают, что при определенных услови-
ях амфотерные терполимеры способны в достаточной степени извлекать нефть. 

Ключевые слова: терполимеры полиамфолитов, загущающая способность, высокая проницаемость, 
однородность, пористая среда, вязкость нефти, увеличение нефтеотдачи, условия неоднородности 
пласта. 
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