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Modeling of nonlinear processes of nucleation and growth  

of GaSxSe1–x (0 ≤ х ≤ 1) solid solutions 

The results on the study of modeling and physico-chemical study of the kinetics of nucleation and growth of 

GaSxSe1–x (0 ≤ х ≤ 1) solid solution. The nucleation heterogeneous process and growth of GaSxSe1–x crystals 

have been studied and simulated taking into account nonlinear equations considering the kinetic behavior of 

crystallizing phases. GaSxSe1–x single and nanocrystals were grown from solution, melt, and by chemical 

transport reaction through steam. GaSxSe1–x crystals were grown by chemical transport reaction in a two-tem-

perature gradient furnace in a sealed quartz ampoule. Iodine was used as a transporting additive. Using the 

Fokker–Planck equation, the evolution of the distribution function of crystals of solid solutions of the GaS–

GaSe system by size at the nucleation time is studied by a numerical method. For the convenience of comparing 

theory with experimental data, we used the GaS1–xSex (x = 0.7 molar fraction of GaSe) composition of the solid 

solution. The Monte Carlo method is used to approximate the time evolution of the nucleation of two types of 

particles for the GaS0.3Se0.7 solid solution, simulated by a constant nucleus size. The results of modeling non-

linear crystallization processes are consistent with experimental data. 

Keywords: nonlinear modeling, kinetics equation of crystallization, semiconductor GaS1–xSex solid solutions, 

numerical solution algorithm, finite-difference equations, Fokker–Planck equation, evolution of the distribution 

function, Monte Carlo method. 

 

Introduction 

The optical properties of the synthesized semiconductor two-dimensional (2D) nanocrystals have pro-

spects for use in devices of quantum electronics (optical elements and switches, transistors, modulators, etc.). 

The functional capabilities of these devices are determined, in particular, by such parameters of nanocrystals 

as the average radius, band gap, and component composition. 

The processes of nucleation and crystal growth are known to be difficult to predict, describe and con-

trol [1]. They are associated with the temporary existence of nanoparticles, making them difficult to quantify. 

After the formation of nuclei, their growth is observed. In this case, the growth conditions may differ from the 

initial stages of nucleation. In addition, during experimental crystallization, several technologically interacting 

processes can operate [2]. 

This article discusses the processes of nucleation and the subsequent formation and growth of layered 

crystals of 2D GaSxSe1–x solid solutions [3, 4]. In particular, we consider the GaS–GaSe semiconductor system 

consisting of a highly volatile inorganic melt, and the process of nonlinear nucleation and crystallization. This 

situation can arise during crystallization, when trying to obtain small crystals of semiconductor solid solutions 

and compounds. 

Interest in semiconductor materials based on AIIIBVI compounds, which are characterized by quantum 

effects, is due to the potential for their use in nanoscale devices. Data on the crystal and electronic structure of 

GaS and GaSe compounds are given in [5, 6]. GaS and GaSe crystals belong to hexagonal syngony, charac-

terized by a layered structure and space group 1

3 6 2hD P m−  [6]. They have several polymorphic modifications. 
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For example, GaSe has four modifications (β-, ε-, γ- and δ-GaSe). At room temperature β-GaS and ε-GaSe are 

more thermodynamically stable modifications.  

In AIIIBVI crystals covalent bonds are in the layers, and a weak Van der Waals bond exists between the 

layers. Due to this anisotropic properties manifest in AIIIBVI. By their optical and electrical properties AIIIBVI 

crystals (GaS [7], GaSe [8]) are close to promising nanotechnology materials, such as graphene and topological 

insulators. GaS and GaSe are wide-gap semiconductors and at room temperature have a band gap of 2.53 and 

1.98 eV, respectively. They have several advantages over other AIIIBVI materials: a large range of operating 

temperatures, the possibility to create light-emitting devices on their basis in the visible spectrum, high values 

of the critical field of electrical breakdown, radiation resistance.  

GaS and GaSe form a continuous series of GaSxSe1–x (0 ≤ х ≤ 1) solid solutions between each other [9, 10]. 

However, the formed poly- and single crystals of GaSxSe1–x solid solutions often have an inhomogeneous dis-

tribution of dislocation density, which leads to mechanical stresses and the formation of intrinsic point defects 

[11–14]. As a result, such a material has irreproducible electrical, optical, photoelectric, luminescent, and other 

physical characteristics. 

The reasons for the nonuniform distribution of structural defects over the volume of the formed  

GaSxSe1–x crystals are determined by several processes. The main ones are crystallization (edge and screw 

dislocations, grain boundaries, pores can form) and heat treatment of crystals (point defects intrinsic and im-

purity can be created or eliminated), as a result of which concentration and temperature gradients appear. 

However, the dimensional and kinetic parameters phases affecting the structure formation and physical prop-

erties of GaSxSe1–x have not yet been considered.  

In the present work the crystallization of GaSxSe1–x solid solutions is considered, taking into account 

metastable phases, which are formed by fluctuations. The results of studying the crystallization of GaSxSe1–x 

in a closed system are presented. Nonlinear crystallization processes of GaSxSe1–x are considered in the frame-

work of the Fokker–Planck type equation [15] in the size space. The evolution of the two-dimensional distri-

bution of kernels of different types in the GaSxSe1–x melt is modeled using the Monte Carlo method [16]. 

Experimental 

The elements Ga-5 N gallium, B5 sulfur and OSCh-17-3 selenium with impurity content no higher than 

510–4 mass% were used in the synthesis of GaS and GaSe binary compounds. Syntheses of GaS and GaSe 

compounds were performed by melting the initial elements taken in stoichiometric ratios in evacuated  

(10–3 Pa) quartz ampoules. The ampoules with the corresponding components were placed in an electric fur-

nace for synthesis. At temperatures above the melting point of GaS and GaSe (melting points of GaS and GaSe 

are 1288 and 1211 K, respectively), ampoules may be destroyed due to high vapor pressure of chalcogens. The 

ampoules were held for 6–8 h at a temperature 5–10 K above the melting point of the compounds. Then am-

poules with liquid components GaS and GaSe were cooled in the power off mode to room temperature. The 

GaSxSe1–x solid solutions were prepared in a similar way. Synthesized GaS (GaSe) compounds and GaSxSe1–x 

solid solutions were identified by differential thermal analysis (DTA; a heating/cooling rate of 10 K min-1) and 

powder X-ray diffraction analysis (XRD). DTA of GaS (GaSe) compounds and GaSxSe1–x solid solutions was 

carried out using a NETZSCH 404 F1 Pegasus system. The accuracy of measurements was ±0.5 to 1 K. The 

XRD phase composition of the obtained samples was performed on a Bruker D8 ADVANCE diffractometer 

with the Cu K-alpha radiation [10]. 

When crystallizing a substance from a solution, as it is known, the solute undergoes transition from the 

liquid phase to the crystalline phase. This process is accompanied by the appearance of many small single 

crystals (mass crystallization). Mass crystallization was performed by cooling a supersaturated GaSxSe1–x so-

lution with the subsequent simultaneous formation of many crystallization centers. GaSxSe1–x single crystals 

were grown from solution, melt, and by chemical transport reaction through steam [17, 18]. 

When growing from a melt the ampule was moved in the furnace at a rate of 0.5–1.1 mmh-1, and the 

temperature gradient near the crystallization front was 25 ± 3 K. GaSxSe1–x crystals were grown during chem-

ical transport reaction in a two-temperature gradient furnace in a sealed quartz ampoule. Iodine was used as a 

transporting additive. 

A homogenized solid solution quenched in the concentration region of the T x−  phase diagram of the 

GaS–GaSe system may remain in the metastable state for some time. Ultimately, it reaches thermodynamic 

equilibrium. At one of the equilibrium concentrations, some micro clusters can form in the matrix GaSxSe1–x 

[19, 20]. 
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Fokker–Planck equation. The kinetics of nucleation in the GaS–GaSe system was studied by an equation 

of the Fokker–Planck type [15]. This equation allows to describe the dynamics of changes in certain crystalli-

zation properties, considering the properties to be random walk. The equation allows to consider the evolution 

of the size distribution function and to describe the walk of nuclei in the size space. In other words, the Fokker–

Planck equation characterizes diffusion with the presence of a drifting force field. It describes the evolution in 

time of the probability density function of the particle’s position, which follows the stochastic differential 

equation. In this case, sample particle trajectories are continuous functions of time. Such a model is used in 

this work. 

Within the framework of this model, we assume that crystallization is described by an equation based on 

the evolution of the function k  of the crystal size distribution ( L ) in time ( t ). In the entire volume of the 

solution, the temperature and concentration are constant. Then the Fokker–Planck kinetic equation for the 

distribution density is written as  

 
( ) ( )G G

p
t L L L

      
= − +  

    
, (1) 

where 0L L ; 0L  is the minimum crystal size; G  is the linear growth rate of the crystal face, and p  is the 

fluctuation coefficient of the growth rate.  

The supersaturation of a solution is determined as follows: ( ) ( ) /k kt C t C = , where kC ( t ) is the con-

centration in time t , 
kC  is the concentration of the saturated solution. Here the linear velocity is ( )1G =  − , 

where   is the kinetic coefficient of the growth rate. 

The system of nonlinear equations was solved numerically, where a uniform grid was used with a step h  

in size and t  in time. The solution was transferred from the j -th layer to the ( 1j + )-st layer by a purely 

implicit difference scheme, after this the function G  was recalculated. The differencing scheme for equation 

(1) has the form: 

 ( ) ( )
1

1 1 1 1 1

1 1 1 12
  2

2

j j j j
j j j j ji i
i i i i i

G pG

h h

+
+ + + + +

+ − + −

 −
= −  − +  −  + 


. (2) 

Equation (2) has order of approximation ( )2O h + . The difference equation for the left boundary con-

dition has the form 

 
1 1

1 1 0 0 1 2
0 2

2j j j j j
j j j j jG pG pG

h h

+ +
+  −   + 

 − + =  . (3) 

The equation has order of approximation ( )2O h h+  + . Difference equations were solved by the sweep 

method, which is applicable due to diagonal prevalence. The differencing schemes (2) and (3) are stable on 

the right-hand side. After transferring the solution to the ( 1j + )-st layer, a new value of the concentration kC  

was calculated, as well as parameters G and  . The integral was calculated by the trapezoidal rule — its 

accuracy is of the order of ( )2O h , which corresponds to the approximation of the differencing scheme. The 

obtained concentration value kC  was reused to find the solution on the ( 1j + )-st layer. This procedure was 

repeated a fixed number of times. Thus, the crystallization of a multicomponent system is considered as a 

combination of physico-chemical and mathematical models. Such a model allows for the numerical implemen-

tation of nonlinear equations by a differencing scheme. Numerical experiments to study the crystallization of 

GaSxSe1–x were carried out in Delphi software. 

Monte Carlo Simulation. Known models of the crystal growth process with their own microphysics allow 

to describe homogeneous and heterogeneous nucleation and growth with two separate one-dimensional size 

distributions. With this approach, the model allows to approximate only the average mass of a heterogeneous 

solution contained in growth units of a certain size. In this case it is impossible to track the spectral distribution 

of the mass of the heterogeneous solution in growth units. 

The evolution of the two-dimensional distribution of phase characteristics during the growth of  

GaSxSe1–x by transport chemical reactions was simulated by the stochastic algorithm [Gillespie (1976) [21]) 

for chemical reactions using the Monte Carlo method [22]. Within the framework of this algorithm, the set of 

a discrete one-component kinetic equation is defined as: 
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where  ( ,  ; N m n t ) is the average number of particles consisting of m and n monomers of the first and second 

kind, respectively. 

A continuous version of this equation is known, for example, in the form of Laurenzi et al. [23]: 
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where ( ), ; ,K m n m n   in (4) and (5) is a constant set of nuclei, which now depends on the composition of 

coagulating particles. 

Discrete equation (4) gives the temporal rate of change in the average number of a polycrystalline mon-

omer with mass m and a single crystal monomer with mass n as the difference of two terms, the first term gives 

a gain in the number of particles whose polycrystal mass has a size m , and a single crystal mass has a size n . 

The equation is calculated as the sum of binary clusters between monomers: one with the mass of a 

polycrystal from the phase of size 'm  and the mass of a single crystal from the phase of size 'n , and the other 

with the mass of a polycrystal from the phase – 'm m  and the mass of a single crystal from the phase – 'n n . 

The second contribution describes the average rate of depletion ( ,m n ) of particles due to their fusion with 

particles of other types. To solve equations (4) and (5) the following initial conditions are required: 

 ( ) ( )0, ; 0 ,N m n N m n=  (6) 

For a discrete equation for any t it is also possible to take ( )  0,0;     0N t = . The numerical solution for (4) 

and (5) is complicated because of the double integral and nonlinear behavior of these equations. The nonline-

arity of the equation, in particular during the growth of GaSxSe1–x, is associated with the nature of the interac-

tion of nuclei and growth cells of a single crystal with different masses in each of them. 

Results and Discussion 

Figure 1 shows X-ray powder diffraction patterns of GaSxSe1–x solid solutions and β-GaS and β-GaSe 

pure compounds, which crystallize in hexagonal syngony with the space group 36  /P mmc  and have the fol-

lowing lattice parameters: β-GaS (a = 4.002  0.002 Å and c = 15.447  0.005 Å) and β-GaSe (a = 3.755  

0.002 Å and c = 15.475  0.005 Å) at room temperature.  

 

 

Figure 1. XRD patterns of β-GaS (top), β-GaSe (bottom) and solid solutions GaS1–xSex at 298 K 
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These values of lattice parameters of for polytypes β-GaS and β-GaSe compounds are consistent with the 

literature data [10, 11] and the JCPDS-ICDD Powder Diffraction File (PDF) card file data: β-GaS (JCPDS No: 

30-0576; a = 3.587 Å and c = 15.492 Å), β-GaSe (JCPDS No: 03-65-3508; a = 3.7555 and  

c = 15.94 Å). The values of lattice constants of GaSxSe1–x solid solutions are also consistent with the data of 

[10, 11]. 

The difference between the structural parameters can be explained with the degree of purity of the com-

ponents used, the experimental procedure and calculation of the lattice parameters, as well as the polytypicity 

of the GaS and GaSe compounds. The number of formula units in the lattice and the density of the compounds 

were as follows: Z = 4; e = 3.87 g/cm3, r = 3.89 g/cm3 (for GaS) and Z = 4; e = 5.03 g/cm3,  

r = 5.07 g/cm3 (for GaSe). 
According to the XRD (Fig. 1) data and DTA (Fig. 2), the components of GaS and GaSe unlimitedly 

dissolve in each other both in the liquid and in the solid state. Unlimited component solubility in GaS–GaSe 

occurs because both GaSe and GaS have the same crystal structure, and Se and S have similar radii, electro-

negativity and valence. In GaSe–GaS system melting occurs over a relatively narrow temperature range be-

tween the solidus and liquidus lines. In other words, solid and liquid phases are at equilibrium in a narrow 

temperature range.  

 

  

a — GaS; b — x = 0.8; c — x = 0.7 mole fraction GaSe;  

d — GaSe 

Figure 2. Differential thermal analysis curves  

of solid solutions GaS1–xSex crystals 

Figure 3. Calculated (curves) and experimental (dots) 

phase diagram in GaS–GaSe system 

According to DTA and DSC data for components GaSe and GaS, the following melting parameters were 

chosen: mΔH (GaSe) = 30300 ± 200 J mol-1, mT (GaSe) = 1211 ± 3 K, mΔH (GaS) = 34800 ± 200 J mol-1, and 
mT (GaS) = 1288 ± 3 K. Comparison of these data with experimental data [10] indicates their correspondence.  

On the basis of DTA, XRD and thermodynamic calculation, the equilibrium Т–x phase diagram of the 

GaS–GaSe quasibinary system with unlimited component solubility is described and modeled (Fig. 3). The 

phase diagram of the quasi-binary system GaS–GaSe is characterized with unlimited solubility of the compo-

nents in the liquid and solid states. Crystallization and melting curves have a minimum point at a composition 

of about 70 mol % GaSe. 

Model takes into consideration our experimental thermodynamic data on the initial GaS and GaSe com-

ponents. The concentration–temperature dependence of the Gibbs free energy of mixing of GaSxSe1–x solid 

solutions, calculated taking into account the rule of mixing components, well approximates the T–x phase 

diagram of the GaS–GaSe system. Conductivity smoothly changes with a change in the composition of solid 

solutions GaSxSe1–x (x = 0–1 mole fraction) single crystals. As the concentration of selenium in solid solutions 

increases, their conductivity also gradually increases by about two orders of magnitude at 298 K. 

Calculated solidus and liquidus temperatures differ slightly from the experimental data (solidus difference 

was 5 K and liquidus 10 K). Phase diagram of the state for GaS–GaSe system is characterized by the mini-

mum (0.7 ± 0.05 mol fraction GaSe and 1200 ± 1 K) and presence of unlimited mutual solubility of the com-

ponents in the system.  
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Our calculation and experimental DTA data on the temperatures of liquidus, solidus and the coordinates 

of the invariant equilibria in the GaS–GaSe system are extremely different from the old data given in [9]. The 

melting point of GaSe is 1210 K [24], which exactly 1 K matches our data. 

A study of the relief of GaS1-xSex crystals grown of various compositions indicates the formation of var-

ious two-dimensional (2D) nanostructures on the surface [19, 20]. Two main types of heterogeneities can be 

distinguished: extended structures and local 2D nano-objects.  

GaSxSe1–x solid solutions melt without decomposition and have no phase transitions. Depending on the 

composition of GaSxSe1–x, the physical properties of solid solutions differ noticeably.  

The mathematical model used by us describes the nucleation in the dispersed region of the melt, deposi-

tion in the homogeneous phase region, transfer of monomers between the two regions, formation and subse-

quent growth of crystals in both regions. The model was composed as a system of coupled nonlinear differen-

tial equations. The number of particles of all types present was fixed and stored, which allows to ignore the 

description of the nucleation rate. Moreover, it is possible to analyze each process step by step. 

For convenience of comparison with the experimental data we used the GaS1–xSex (x = 0.7 molar fraction 

of GaSe) composition of the solid solution in the simulation. GaS0.7Se0.3 corresponds to the minimum in the 

GaS–GaSe phase diagram and can be considered as a quasi-one-component. 

When deposition occurs in a homogeneous phase region, the concentration of monomers falls below the 

equilibrium concentration at the surface of the droplets in the dispersed region. This leads to the transfer of 

monomers from the droplets to the homogeneous region. Then the homogeneous phase is incorporated into 

crystals and nuclei, i.e., a single crystal is grown. In this case, the presented numerical calculations, taking into 

account the sizes and/or masses of particles, agree with the experimental data. 

Nucleation. The evolution of the dispersed phase in crystallization experiments in a closed system occurs 

by a complex mechanism. In this case, the formation of metastable intermediate solid phases and the evolution 

of dispersed particles of the solid phase at the end of the process are possible. The mechanisms of such phase 

transformations and the crystallization kinetics are described using nonlinear models [25, 26]. Nonlinear prop-

erties of the crystallization process are determined taking into account the boundary conditions and coefficients 

of the kinetic equations, and also depend on the crystallization prehistory. Kinetic coefficients are calculated 

based on the theory of diffusion growth and dissolution of second-phase precipitates. These coefficients deter-

mine the probability of attachment and ejection of one particle per unit time, respectively. 

A homogenized solid solution quenched in the concentration region of the T–x phase diagram of the GaS–

GaSe system [10] can remain in a metastable state for some time. Ultimately, it reaches thermodynamic equi-

librium. At one of the equilibrium concentrations, some microclusters can form in the GaSxSe1–x matrix 

[19, 20]. 

Taking into account the 2D nucleation mechanism [26], the growth of single crystal can be represented 

as follows. Crystal faces grow due to the formation of two-dimensional nuclei of critical size in the absence of 

screw dislocations ending on the surface. 2D nuclei are formed when individual growth units (for example, 

atoms, molecules, dimers) are adsorbed on the surface of a crystal, diffuse and agglomerate. After a 2D nucleus 

becomes larger than its critical size, it becomes thermodynamically advantageous for attaching growth units 

to this nucleus. In a supersaturated solution a 2D nucleus larger than the critical one propagates across the face 

until it reaches the crystal boundary. These boundaries can be either the edge of the crystal layer, or the front 

of the layer below it or the growth front from another nucleus. 

The nucleation rate ( )J t  approaches a stable state according to an equation of the form [27] 

 ( ) ( )  1 /s lagJ t J exp t t = − −
 

 

 ( )( ) ( )( )2 21/ 6.3 1/ 12c lag ca L Z t a L Z  , (7) 

where sJ  is the stationary nucleation rate; Z is the Zeldovich factor; ( )ca L  is the rate at which monomers are 

absorbed by a cluster with a critical size cL ; lagt  is the time lag. 

This expression (7) describes the asymptotic behavior of the Fokker–Planck equation and is in qualitative 

agreement with the numerical calculation for the dependence of the nucleation frequency of GaSxSe1–x on time. 

Since the gradient ( )L  in the region |  L  − cL |<1/2Z is small, the cluster will move in this region by random 

walk with a jump frequency ( )ca L . The time required for the cluster to disperse the 1/Z distance by random 

walk is determined by the time lag, which is estimated as ( ) 21/ 2lag ct a L Z= . 
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Using Fokker–Planck equation. Suppose that crystallization of solid solutions occurs from a uniformly 

supersaturated solution in a closed system. Solution has a limited volume V  at time t  = 0. If the concentration 

of the dispersed phase Q exceeds the solubility of the components of the system, then the nucleation and growth 

of the solid phase occurs. With such crystallization, the formation of various modifications of the solid phase 

is possible. 

Assume that during crystallization a chemical reaction does not occur and a constant temperature of the 

solution is maintained. Mixing the solution does not lead to cracking and aggregation. Mass crystallization 

occurs by spontaneous nucleation, i.e., nucleation of crystallization centers, crystal growth and dissolution of 

particles of the dispersed phase. 

Nucleation involves the formation and growth of clusters from molecules of the initial solution. Cluster 

formation occurs up to the size at which it is possible to distinguish a crystal face as a structural element 

responsible for growth. The nucleation rate, crystal growth rate and dissolution of the particles of the dispersed 

phase are determined with the degree of supersaturation of the solution and the size of the crystal face [28, 29]. 

Since the formed crystals have a limited size, it is necessary to choose the boundary conditions for the 

equation of distribution density. After that, the kinetic equation is supplemented by the initial condition and 

the balance equation. Thus, we obtain a system of nonlinear equations that are solved by the difference 

method [30]. 

The Fokker–Planck equation approximates distribution density of GaSxSe1–x crystals by size (Fig. 4a). It 

was assumed that the temperature dependence on nanocrystals (particle) size is described by the relation 

 
2

0  2

0

R
T T exp

R

 
=  

 
, (8) 

where R is the particle radius; 0R  is the initial particle radius.  

 

  

1 — 0.005 and 2 — 0.001. Curve — approximation  

by dependence (1) at γ = 5 and β = 1 (Equation (1)) 

Figure 4a. Evolution of distribution function of GaS0.3Se0.7 

solid solution by size in nucleation time (t, s)  

Figure 4b. Relative mass dependence of GaS0.3Se0.7  

nanocrystal on time; m is particle mass with diameter 

d ≈ 30 nm, m0 is arithmetic mean mass of particles 

Comparison results of the calculation (curve) and experiment (points) of the dynamics of the mass change 

(∆m) of GaSxSe1–x nanocrystals with respect to the initial arithmetic mean mass of particles 0m  diameter 

30 nm are shown in Figure 4b. Numerical experiments indicate that the concentration of crystals of a given 

composition varies from the initial supersaturation to equilibrium concentration in a very short time. From the 

concentration dependence of the formed GaSxSe1–x crystals on the formation time, it follows that the bulk of 

the crystals is formed within 2×10–3 s from the moment of crystallization initiation. 

At the same time, the crystal concentration of a given composition decreases from the initial supersatu-

ration to the equilibrium concentration. This process is accompanied by a decrease in the oversaturation of the 

solution. The supersaturation ends with a constant number of nuclei and then the crystals grow with a further 
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increase in crystal size. Thus, when using the Fokker–Planck equation, the concentration of the crystallizing 

phase was taken into account, as well as data on the supersaturation and crystal size. 

Using the stochastic model by the Monte Carlo method. Within the framework of the stochastic model 

[21–23] we consider a spatially homogeneous volume V, in which there are particles belonging to Ns different 

types of particles. Each type is characterized by both its liquid mass and the mass of its nucleus, ( )    , .m nu u u =  

Let us assume that the forming particle with the composition u  is a member of the μ-type. After time t = 0 

the types can be randomly combined according to the reaction 
, , ,m n m n m m n nA B C +   ++ = , where 

,m nA  and 
,m nB    

are particles of composition ( )    ,m nu u u =  and ( )    ,v m nu u u = , respectively. 

According to this model, the transition probabilities for particle merging events are: 

 ( ) ( ) ( )1, , , ; ,i ja i j V K i j n n dt P i j t dt−=   (9) 

where ( ),K i j  is the set of nuclei; V  is the volume of the solution.  

( ), ;P i j t dt  – Pr is the probability that two particles of i  and j  (for ij ) types with in  and jn  number of 

particles will collide in the nearest time interval. Then the probability of collision of two particles of the same 

type i  with the number of particles in  during the inevitable time interval can be represented in the form 

 ( ) ( )
( )

( )1
1

, , , ;
2

i in n
a i i V K i i dt P i i t dt−

−
=  . (10) 

Within this structure the  index is possible for each pair of nuclei ,i j  that can collide. For a system with 

N types ( 1 2, , ...,  NS S S ) 
( )    1 

2

N
N

+
 . The set {ν} defines the total collision space and is equal to the total 

number of possible interactions. Then the probabilities of  ( ,i j ) and   ( ,i i ) transitions can be represented 

by one index (αν). 

This stochastic model for GaSxSe1–x crystallization was solved using an algorithm introduced by Gillespie 

[21] for chemical kinetics and modified by Laurenzi et al. [23]. 

Comparison of Monte Carlo simulations with experimental data. The evolution of the two-dimensional 

distribution of nuclei (crystal nucleus) during crystal growth was simulated using the Monte Carlo method. 

A stochastic algorithm for chemical reactions was used to simulate the kinetic behavior of the nuclear distri-

bution. A set of two-component kinetic equations was used. 

The performance of stochastic Monte Carlo simulation (MCS) was tested by studying the growth of crys-

tals with a constant nucleus size in solution, and the results were compared with our experimental data on the 

kinetics of nucleation. The influence of a two-component set of nuclei on the dynamics of mass fluctuations 

of nuclei of the process was studied. 

To simulate random processes associated with the deviation of the types of nuclei from the critical size, 

the Monte Carlo method was used. Time evolution of particle species was approximated based on the distri-

bution of the output value N(y), where N is the number of particle types, y is the type of particle nuclei. For 

random ( ),f m t  and ( ,f n t ), the equations for N are stochastic differential equations. Therefore the statistical 

description of the growth process was carried out using kinetic collection equations for two corresponding 

probability distributions. 

In MCS the number of particles of a certain critical size grown from a solution in their original form, i.e., 

the initial number of particles was taken as 60, and the average value was calculated for 1000 realizations 

taking into account the dynamic distribution of particles. 

For simulation of a two-component constant of a discrete set of nuclei, the following value was used: 

( ) 4 3 1, ; , ' 1.1 10 cm sK m n m n − − = . The monomer particle had a radius of 10 μm (particle mass  

0m  = 3.77×10–9 g), and the dispersed monomer was a solid-liquid (SL) GaSxSe1–x with a radius of 0.1 μm 

(mass of the SL phase n0 = 7.11×10–15 g). The mass grid of the SL-solution was selected in accordance with 

the mass of the particle ( i ) = i  × 0m , (  i = 1, .., pN ) and the mass of the SL phase ( j ) = j  × 0n , (  j = 1, .., 

s lN − ). 

The volume of the studied system in all calculations was taken to be 1 cm3. 30 intervals for the particle 

mass grid and 30 intervals for the SL phase mass grid were determined. We also took into account the 
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possibility of the existence of pure monomeric particles containing pure GaS and/or GaSe particles, as well as 

pure structural units of SL GaS and SL GaSe. Then the total number of types in our numerical experiment can 

be calculated as: total p s l p s lN N N N N− −=  + + . 

The maximum number of types of structural units that can be generated during simulation, in the selected 

case, is 960. Solutions obtained as a result of Monte Carlo calculations for N (1, 1; t ), N (1, 0; t ) and  

N (0, 1; t ) types are shown in Figure 5a–c. Our experimental data are also shown in Figure 5.  
 

  
a b 

 
c 

Figure. 5. Modeling of time evolution of the types of nanocrystals (a) N (1, 0), (b) N (0, 1), and (c) N  (1, 1)  

for a GaS0.3Se0.7 solid solution modeled by a constant nucleus size (a solid phase nucleus in a melt) 

( ) 4 3 1, ; , ' 1.1 10 cm sK m n m n − − = . Approximation curve are the result of Monte Carlo simulation of the two-component 

kinetic equation (5). Approximation curve of the averaging result over 1000 realizations 

The differences between the mean values of Monte Carlo simulations and experimental data are negligible 

and they can be substantiated by statistical criteria. Description of the two-dimensional discrete size distribu-

tion after 100 s also indicates agreement between the mean values of the Monte Carlo simulation and the 

experimental data. 

Conclusions 

We used a model close to the ideal solid solution GaSxSe1–x, which resembles the structure of the liquid 

phase. A set of self-consistent thermodynamic parameters was obtained. The calculated phase diagram and 

thermodynamic property data were in good agreement with the experimental information. In the GaS–GaSe 



S.M. Asadov 

40 Bulletin of the Karaganda University 

system, the existence of continuous GaSxSe1–x solid solutions and the formation of a phase diagram with a 

minimum at 70 mol% GaSe were confirmed. 

Model of kinetics of GaSxSe1–x nucleation using the Fokker–Planck equation takes into account compo-

sitional fluctuations due to the initial state of solid solutions. It was established that taking into account random 

walks into the size space during crystallization allows to describe the dynamics of changes in the SxSe1–x prop-

erties. 

By numerically solving the equation, the evolution of the size distribution function of the GaSxSe1–x crys-

tal nuclei in nucleation time is approximated. For calculations a purely implicit differencing scheme is used, 

which involves splitting the extended volume of the solution into independent fragments. It follows from the 

time dependence of the concentration of GaSxSe1–x crystals (x = 0.7) that the bulk of the crystals was formed 

within 2×10–3 s from the moment of crystallization initiation. 

The multicomponent Monte Carlo algorithm based on a stochastic approach to chemical reactions, using 

the example of GaSxSe1–x allowed to calculate statistical fluctuations for two-component aggregation of parti-

cles taking into account their radius and composition. Taking into account the transition probability in micro-

physical processes allows to determine how a specific pair of particles (nuclei, crystals, solid-liquid) with a set 

of properties will be aggregated in the next time interval. 

The solution of the continuous set of the kinetic equation shows that if an individual particle acquires a 

mass much greater than the rest of the system, then it is necessary to take into account statistical fluctuations 

in the region of large particle masses. Agreement between the numerical solutions of Monte Carlo simulations 

and experimental data on crystal growth in the GaS–GaSe system was observed. 

The variety of stationary distributions for time evolution of the types of structural units indicates the 

possibility of controlling the process of two-component aggregation of nuclei by varying the properties of the 

nuclei of a pair of particles during the formation of crystals of given sizes. 
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С.М. Асадов 

GaSxSe1–x (0 ≤ х ≤ 1) қатты ерітіндісінің ядролануы  

мен өсуінің сызықтық емес процестерін модельдеу  

GaSxSe1–x (0 ≤ х ≤ 1) қатты ерітіндісінің ядролануы мен өсу кинетикасын модельдеу және физика-

химиялық зерттеулердің нәтижелері келтірілген. GaSxSe1–x кристалдарының ядролануы мен өсуінің 

гетерогенді процесі зерттеліп, кристалдану фазаларының кинетикалық әрекетін ескеретін сызықтық 

емес теңдеулерді ескере отырып, модельденді. GaSxSe1–x монокристалдары мен нанокристалдары 

ерітіндіден, балқымадан және химиялық бу беру реакциясы арқылы өсірілді. GaSxSe1–x кристалдары 

химиялық тасымалдау реакциясы әдісімен герметикалық кварц ампуласында екі температуралы 

градиент пешінде алынды. Йод тасымалдаушы қоспа ретінде пайдаланылған. Фоккер-Планк теңдеуін 

қолдана отырып, GaS–GaSe жүйесінің қатты ерітінділерінің кристалдарының үлестіру функциясының 

эволюциясы сандық әдіспен зерттелді. Теорияны тәжірибелік мәліметтермен салыстыруға ыңғайлы 

болу үшін GaS1–xSex қатты ерітіндісінің құрамы қолданылды (x = 0,7 молярлық фракция GaSe). Монте-

Карло әдісі GaS0,3Se0,7 қатты ерітіндісі үшін бөлшектердің екі түрінің ядролануының уақыт 

эволюциясын жақындату үшін пайдаланылған, тұрақты ядро өлшемімен модельденген. Сызықтық емес 

кристалдану процестерін модельдеу нәтижелері тәжірибелік мәліметтермен сәйкес келеді. 

Кілт сөздер: сызықтық емес модельдеу, кристалдану кинетикасының теңдеуі, GaS1–xSex қатты 

жартылай өткізгіштері, сандық шешімдердің алгоритмі, ақырлы айырымдық теңдеулер, Фоккер-Планк 

теңдеуі, үлестіру функциясының эволюциясы, Монте-Карло әдісі.  
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Моделирование нелинейных процессов зарождения и роста  

твердых растворов GaSxSe1–x (0 ≤ х ≤ 1) 

Приведены результаты исследования моделирования и физико-химического исследования кинетики за-

рождения и роста твердого раствора GaSxSe1–x (0 ≤ х ≤ 1). Гетерогенный процесс зародышеобразования 

и роста кристаллов GaSxSe1–x изучен и смоделирован с учетом нелинейных уравнений, учитывающих 

кинетическое поведение кристаллизующихся фаз. Монокристаллы и нанокристаллы GaSxSe1–x были вы-

ращены из раствора, расплава и путем химической реакции переноса через пар. Кристаллы GaSxSe1–x 

получены методом химической транспортной реакции в двухтемпературной градиентной печи в запа-

янной кварцевой ампуле. Йод использовался в качестве транспортной добавки. С помощью уравнения 

Фоккера-Планка численным методом изучена эволюция функции распределения кристаллов твердых 

растворов системы GaS–GaSe по размерам в момент зарождения. Для удобства сравнения теории с экс-

периментальными данными применялся состав твердого раствора GaS1–xSex (x = 0,7 мольная доля GaSe). 

Метод Монте-Карло использовался для аппроксимации временной эволюции зарождения двух типов 

частиц для твердого раствора GaS0,3Se0,7, моделируемого постоянным размером зародыша. Результаты 

моделирования нелинейных процессов кристаллизации согласуются с экспериментальными данными.  

Ключевые слова: нелинейное моделирование, уравнение кинетики кристаллизации, полупроводнико-

вые твердые растворы GaSxSe1–x, алгоритм численного решения, конечно-разностные уравнения, урав-

нение Фоккера–Планка, эволюция функции распределения, метод Монте-Карло. 
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