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Invariants of ratio of crystal-mobile, liquid-mobile,
and vaporized chaotized particles in solid, liquid, and gas states of substance

The authors of the article have developed the concept of chaotic particles based on the Boltzmann distribution
over the kinetic energy of the particles’ chaotic motion. This distribution allows to combine the solid, liquid,
and gaseous states of matter with the help of energetic particles called crystal-mobile, liquid-mobile, and va-
por-mobile. The ratio of the proportions of such randomized particles determines a certain state of matter ag-
gregation. The sum of the shares of these particles in all combinations at any temperature is equal to unity.
During the study it has identified that qualitative and quantitative analysis of states with a priority basic effect
of a randomized component of a substance can be conducted. Certain regularities of states were discovered,
independent of the specific type of substance and consistent with the physicochemical properties. The entropy
of mixing of all three energy classes of chaotic particles was calculated for simple substances. It was charac-
terized by a maximum in the interval of the boiling point of substances. This feature testifies to the unique va-
riety of possibilities for the implementation of the most complex heterogeneous processes in terrestrial condi-
tions at atmospheric pressure, which ultimately ensured the self-organization of life.

Keywords: Boltzmann distribution, kinetic energy, chaotic particles, entropy, zero approximation, barium,
melting point, boiling point.

Introduction

Until now, there is no sufficiently complete theory of the liquid state of matter, if only because, in con-
trast to the gaseous and solid states, there is no “zero approximation” for the intermediate state [1]. So, there
is no attraction or electronic repulsion of particles in an ideal gas, that is, the potential energy of their interac-
tion is neglected. In an ideal crystal, there are no violations in the correctness of the crystal lattice due to ne-
glect of the kinetic (thermal) energy of the chaotic motion of particles. If we understand the ideal liquid state
of matter as an intermediate one in terms of these neglections, then we get an absurd paradox: in an ideal lig-
uid, both potential and kinetic energy should be neglected.

Such a result is a consequence of a logical error, which is known in philosophy in the form of a state-
ment: any definition through negation is flawed. One should focus on the preservation of any feature or
property, and not on its absence. In this case, thermal energy turns out to be a single primordial property of
matter in all its states of aggregation, which should be taken as a zero approximation for the state of matter as
a whole, avoiding opposing one state of aggregation to another, which leads more to paradoxes than to un-
derstanding the essence of the matter.

The proposed zero approximation turns out to be constructive because there is a universal tool for its
use — the fundamental distribution, or energy spectrum of Boltzmann, which is also applicable to separately
taking into account the effect of kinetic energy on a given distribution not only for gaseous, but also for con-
centrated states [2]. In this case, it is sufficient to know the melting points T, and boiling points T, of the
substance in order to distinguish the energy classes of random particles located above or below these barriers
from the thermal barriers of melting RT,, and boiling RT,, and to judge their character of influence on the
solid, liquid, and gaseous states in the corresponding temperature intervals; 0 — T, Ty — Tp, Tp— 0.

The concept of chaotic particles put forward by the authors is based on this idea [3], which allows using
the Boltzmann distribution (E; is the kinetic energy):

E o &
P=e RT/Ze RT (1)
i=1

to determine the share of low-energy particles called crystal-mobile:
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RT, T
P, =1-exp| ——= [=1-exp| ——|, 2
SRR AR ®
the share of medium-energy particles called liquid-mobile:
T T,
P =exp| —— |-exp| —= |, 3
PEEARES 0
and the share of high-energy particles called vapor-mobile:
T
P.=expl—=|, 4
m p[ = j )
subject to the condition
Pom + Pgn + P =1 (%)

This mathematical model is the “zero approximation” of all three aggregate states individually and as a
whole, since their shares are compatible at any temperature.

The purpose of this work is to qualitatively and quantitatively estimate the entropy invariants of mixing
of randomized particles using the Boltzmann distribution for simple substances.

Experimental

In this model, invariants of the P¢m, Pigm, Pum ratios are immediately revealed under boundary tempera-
ture conditions. So, at T = 0, the share of crystal-mobile particles is equal to unity and, accordingly, the
shares of liquid and vapor-mobile particles are zero. This characterizes the solid state of matter in the form of
an ideal crystal. At T = o, only vapor-mobile particles exist and the state of matter corresponds to the con-
cept of an ideal gas. At the melting point, P = 0.632, and the sum Pygy + Py = 0.368. If we assume that
crystal-mobile particles provide the stability of the solid state of matter, and liquid and vapor-mobile ones
violate this stability, then the ratio 0.632:0.368 should be understood as the limiting invariant of the preserva-
tion of the solid state, related to the system-wide characteristics of stability. The golden ratio of 0.618:0.382
is the closest to this ratio, which serves as a universal measure of the structural harmony of the system, their
structural and chaotic sides in the widest class of objects [4, 5].

The same applies to the boiling point, with the difference that there is a transition from a condensed
state to a vapor state and the sum of the crystal-mobile and liquid-mobile particles is the binding component,
and the content of the vapor-mobile particles is chaotic. This follows from the fact that at 7= Ty, Py, = 0.368,
and P¢ + Pigm = 0.632.

Knowledge of the specific values of T, and T, is required for a more detailed analysis of the
Perm:Pigm:Pym ratio at any temperature, although in the most general form, it is possible to establish its own
invariants for each state.

So, in the interval 0+T, the share of crystal-mobile particles changes from unity to P, = 0.632, and
function (2) undergoes an inflection, further tending to zero at 7 — oo. This inflection is detected by double

differentiation (2)
0P _ Ty ( ij ( ij

ot T 2 T P T) ©)
from which, when equating to zero, in addition to the asymptotic approximation of function (2) to unity at
T — 0 and to zero T — oo, the position of the inflection point of this function is established at 7= 0.5T,,. At
this point, there is a maximum decrease in crystal-mobile particles and, accordingly, an increase in the sum
of liquid- and vapor-mobile particles. In this case, the crystal retains high connectivity P, = 0.865, but turns
out to be noticeably loosened Py + Py = 0.135 and thus prone to plastic deformation and melting.

This is consistent with the well-known Bochvar-Tamman temperature, which refers to the optimal tem-
perature of plastic deformation T,y = 0.5T,, and is either experimentally recorded or generalized on the basis
of a large number of experimental data [6]. At this temperature, diffusion in the lattice of the solid becomes
noticeable and its reactivity begins to manifest itself.

There are also more subtle features of the temperature dependence of the properties of a solid. Accord-
ing to Tamman, the mobility of particles on the crystal surface is found to be about 0.3Ty,. It has been also
found that at temperatures above 0.5T, deformation is not accompanied by hardening and the metal flows at
a constant rate under a constant load, which is characterized as its creep. This is explained by the increased
role of vacancies, and the number of atoms in the inter-aisles, and indeed the entire set of defects in the crys-
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tal. The movement of defects occurs due to thermal fluctuations, the frequency of which always decreases
with decreasing temperature. It is noted that the region (0.4 + 0.8)T, is the most typical for creep [6, 7].

Thus, in addition to the optimal plasticity temperature 0.5Ty,, the zone of manifestation of plasticity ef-
fects (0.3 + 0.8)Ty, is also the empirical invariants of plasticity. In this case, the beginning of this zone can be
interpreted as an area of acceleration of these effects manifestation, and the end of the zone — as an area of
slowing down of this process. However, as applied to the temperature dependence of the share of crystal-
mobile particles (2), Eq. (6) takes on the meaning of the rate of decrease in the content of these particles.
This will allow it to be used to express acceleration by taking the third derivative

o°P T

— =TT *(-6+6T,T T, T 2)exp(—?mj, (7)
in which, the asymptotic tendency of acceleration to zero at 7= 0 and T = oo, equating the trinomial to zero
leads to the quadratic equation

6T>—6T T+T °=0, (8)
having two real roots
T (3+/3
T.= ( e ) - (€)]

From this, within the framework of the chaotic particles concept, two extreme invariant points are
found, namely the maximum acceleration of the decrease in the share of crystal-mobile particles,

B3

Tl 2(05—?JT”] z021Tm f (10)
and the minimum acceleration of the loss of these particles,

T, = (0.5+§ij ~0.79T, , (11)

which correlate with the experimentally found plasticity zone (0.3+0.8) Tp.

The obtained results allowed the authors to express for the first time the useful energy costs for plastic

deformation at any temperature in the form of an addition to the thermal energy at the melting point
AE =RT, —~RT =R(T, -T) (12)
and determine the energy efficiency of rolling mills [7].

The temperature dependence of the share of vapor-mobile particles (4) mathematically corresponds to
the inverse mapping of dependence (2) for crystal-mobile particles, with the difference that the temperature
is normalized according to T,. Nevertheless during differentiation, the form of the derivatives differs only in
sign (the function increases instead of decreasing) while maintaining the same form of the invariants: inflec-

tion points at 0.5T,, T, =(0.5—\/§/6)Tb ~0.21T,, T, =(0.5+\/§/6) ~0.79T,. However, if the range of in-

variants of crystal-mobile particles refers to the solid state, then a similar range for the gaseous state as a
whole enters the condensed state with a possible strike even in a solid in dependence on the specific ratio of
Ty and Ty, for each substance.

It can be expected that the revealed features for the behavior of vapor-mobile particles directly relate to
the temperature dependences of vapor in equilibrium with a solid and a liquid, as well as to some subtle ef-
fects of the presence of vapor-mobile particles in the condensed bodies themselves, since the invariant at T,
0.5T, and T, correspond small fractional values P,y equal to: 0.086; 0.135 and 0.282, against those set for
crystal-mobile particles: 0.992; 0.865 and 0.718.

The mathematical model for liquid-mobile particles (3) is determined by the influence of both the melt-
ing and boiling points, and therefore, taking into account the opposite nature of the corresponding tempera-
ture dependences for crystal-mobile and vapor-mobile particles, it should contain a maximum. It can be
found analytically by differentiating function (3) and equating the derivative to zero:

dP, 1
qu :F[Tm exp(-T, /T)-T,exp(-T,/T)|=0, (13)
whence we found, in addition to the horizontal asymptotes at 7= 0 and 7 = oo, also the maximum point Pqm

T,-T,
T oy =— 14
max,Igm In (Tb /Tm) ( )
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Substituting (14) into (3), we determine the maximum share of liquid-mobile particles

T,In Ty T,In T
P =exp Tn exp Tn
lgm, max Tb —T Tb —T

m m

For any ratio of T, and Ty, this invariant of liquid-mobile particles is entirely in a liquid state, and this

- . . T,
can be proved by limiting oneself to the natural conditions Ty, > T, and, accordingly, T—b >1.

m

To this end, we first prove the inequality T

max,lgm

Sl P >T . (15)
In(T, /T,)
By means of identical transformations (15), we arrive at the expression
T,

T—b>1+ln—b, (16)
T T

m m

>T.:

. . T, T . . ..
from which it follows that since In_l_—b >0, then [1+ In T—b] >1 and then T, > T, in accordance with the ini-

m m

tial conditions.

To prove that T, jgn <Ty
T,-T,
— N _<T, 17
In(T/T,) ° s
by similar identical transformations (17) is reduced to the inequality
T _ InT—m >1. (18)
Tb Tb

T
|In—2
b

, the va-

Taking into account that for the region 0 < -I_I-_—m <1 the inequalities AL > InT—m and L <
b b b b
lidity of inequality (18) follows, which is confirmed by its numerical analysis.

Belonging to the extreme content of liquid-mobile particles indicates its particular complexity, which,
together with the present crystal-mobile and vapor-mobile particles in the same area, gives rise to widespread
ideas about its mechanical mixture of solid and gaseous states [1]. However, the discussed extremality (14)
does not at all refer to the equality of the shares of crystal-mobile and vapor-mobile particles, but to the alge-
braic equality of their increments.

Results and Discussion

All the noted features can be illustrated more clearly by the example of the relationship of aggregate
states for barium — a typical metal of the second group of the Periodic Table of Chemical Elements (Fig. 1).

Figure 1 illustrates that the equality of the shares of crm- and vm- particles falls almost strictly at the
boiling point. If we set it into the equation of equality of the shares of crystal-mobile (2) and vapor-mobile
particles (4),

T T,
l—exp| —— |=exp| — =2 |, 19
then we get the solution
.
- —_|n(1-e*)=0.46, 20
- infi-e”) @
whence follows
T, =0.46T,. (21)
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Figure 1. Dependence of the shares of crystal-mobile (1), liquid-mobile (2),
and vapor-mobile (3) particles on temperature for barium

This value is consistent with the average value of the T,/T,, ratio, established for 55 metals and equal to
2.2 [7], from which T, = 0,44T, has been found. This indicates a certain regularity in referring the equality of
the shares of crm- and vm- particles to the boiling point.

The equality of shares, and hence the probability of detecting any signs of distinguishability of any ob-
jects, has a deeper meaning, which is associated with the achievement of the maximum uncertainty, or the
system entropy [8-10, 5]. From this point of view, attention is drawn to the proximity of the shares of crm,
Igm- and vm- particles referred to the boiling point. In this case, according to (2)-(5) at T = T, the ratio
Perm:Pigm:Pun = 0.37:0.37:0.26 is obtained. Full equality of the shares of these particles can be achieved by
the condition P¢my = Pigm = Pym = 1/3, which allows us to find the necessary invariant relation by (4)

%:exp(—Tb IT). (22)

In this ideal case, the temperature of the substance should be equalto T = (Tb/ln 3) = 0.91T, , which con-

firms its proximity to the boiling point.

The required T/T,, ratio (22) under real conditions can be observed only under suitable conditions,
since the boiling point strongly depends on the external pressure, which is 101325 Pa on the Earth’s surface
and taken as normal conditions. The melting point depends on the external pressure to a much lesser extent,
and therefore, the Ty/T,, ratio can vary over a wide range, both natural and artificial.

The ratio of the shares of crystal-mobile, liquid-mobile, and vapor-mobile particles at any temperature
can be expressed generally in the form of the entropy of mixing of these particles in accordance with their
virtual existence and interconversion

Smi>< = _Rzpi In pi (23)
1

where p; is the proportion of different elements of the system to be mixed, n is their number, R is the univer-
sal gas constant equal to 8.314472 J/mol, when the process is expressed in terms of physical entropy. It can
be presented in the form of

InP

lgm

Syix =—R(Py INP,, + R

mix crm crm lgm

+ I?/m In I?/m) ' (24)
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or in more detail, taking into account (2)—(5) as

oo ol ool 2]

Smix =-R ) (25)
ool 3 owl 3 | Jool
T T T T

It is enough to differentiate (25) and equate the derivative to zero to find the temperature, at which the
maximum entropy is realized. It seems impossible to analytically determine the position of this maximum
due to the difficulty of freeing the temperature from the resulting transcendental equations; therefore, this
temperature T, was determined numerically for all metals, for which reference data are available [11].

In general, the formation of the function maximum (24) is necessary, since these functions take zero
values both at T = 0 and at T — oo due to the presence of only one kind of particles at this value, respectively
P, =1 and P, =1, due to which all fragments of equation (24) are zeroed both by the condition 1In1=0
and by the condition 0In0=0-(—)-0.

The results of calculating the entropy of mixing of three energy classes of chaotic particles are shown
by the example of barium in Table 1 and Figure 2.

Table 1

Entropy of mixing of crm-, Igm- and vm-particles depending on temperature for barium

T, K Smix, J/mol T, K Smix. J/mol T, K Smix, J/mol T, K Smix, J/mol
0 0 800 6.270 1600 8.824 2300 9.016
100 4.2-10°° 900 6.871 1700 8.912 2400 8.989
200 0.387 T,=1000 7.364 1800 8.974 2500 8.954
300 1.309 1100 7.764 1900 9.014 2600 8.914
400 2.503 1200 8.086 2000 9.036 2700 8.867
500 3.650 1300 8.344 2100 9.041 2800 8.816
600 4672 1400 8.547 T, =2170 9.038 2900 8.762
700 5.542 1500 8.704 2200 9.034 3000 8.705
Smix, J / mol
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Figure 2. Dependence of the entropy of mixing of three energy classes of randomized particles
on the barium temperature. Melting points, boiling points, and maximum entropy of mixing are indicated
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As can be seen from these data, the region of the maximum entropy of mixing is expressed rather
smoothly, adjacent directly to the boiling point of barium with a value of 9.041 J/mol at a temperature of
2090 K, which is 0.963T,. In this case, the difference between the values of the entropy of mixing themselves

S
is even smaller: at Ty, Smix = 9.038 J/mol, which ensures the ratio — =% = 0.99967.
Similar results were obtained for 54 metals according to reference data for Ty, and T, [12], which made
it possible to plot the dependence of the temperature, at which the maximum entropy of mixing was reached
on the boiling point (Fig. 3).

Smix,max’
6000 e
4000 .2
2000 r . ': s
° O
0 1 1 1
0 2000 4000 6000 Tn K
T, ixmax 1S temperature of the maximum entropy of mixing, Ty is boiling temperature.

Points — calculation according to reference data [12] through T, and T, according to (24),
straight line — according to the dependence

Figure 3. Dependence of the temperature of the maximum entropy of randomized particles mixing
on the metals boiling point

In this case, a straight-line dependence was obtained, starting from the origin of coordinates:
Tsmix max = 0.9947-I—b ! (26)

indicative of the functional nature of this dependence. It is retained when supplemented with reference data
for other simple substances. However, considering the dependence of the boiling point on atmospheric pres-
sure, the resulting invariant applies only to terrestrial conditions, although this limitation is of extremely
great evolutionary significance.

Indeed, in this case, the maximum entropy for the joint presence and mixing of crystal-mobile, liquid,
and vapor-mobile particles creates unique conditions for the realization likelihood of the widest variety of
heterogeneous processes occurring on the Earth’s surface, primarily with the participation of volcanic pro-
cesses with the eruption of liquid lava, geysers, dust and gas clouds both on the land surface and into the at-
mosphere as well as into the oceans depths. Isn’t it this ideal chaotization of solid, liquid, and gaseous states
of matter and their mutual penetration into each other in the form of three energy classes of chaotic particles
due to the extremely small probability of self-organization of life on Earth?

Conclusions

As a “zero approximation” for the solid, liquid, and gaseous states of matter as a whole, it is proposed
to use a unified Boltzmann distribution over the kinetic energy of chaotic (thermal) particle motion with the
allocation of three energy classes, specifically crystal-mobile with thermal energy no higher than RTy,; liquid-
mobile with energies above RT., but below RT,; vapor-mobile with an energy of at least RTy. The sum of the
shares of these particles in all combinations at any temperature is equal to unity.

The ratio of the shares of crm-, Igm and vm-particles determines the originality of each state of matter
and their relationship as a whole, which can be regarded as a generalization of the previously known scat-
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tered “zero approximations”. At the same time, it is possible to carry out not only a qualitative, but also a
guantitative analysis of states with a priority basic effect of a randomized component of a substance.

Such an analysis revealed certain invariants of states, independent of the specific type of substance and
consistent with the physicochemical properties. So, at T = 0, the substance is provided only by crystal-mobile
particles, which corresponds to the concept of an ideal crystal, and at T — oo, only vapor-mobile particles
remain, and this is consistent with the concept of an ideal gas. At melting points T, and boiling points Ty, the
shares of particles responsible for the structural stability of the states, respectively, solid and condensed, are
close to the golden ratio. Differential analysis of the temperature dependence of the share of crystal-mobile
particles established an inflection point equal to 0.5T,, and corresponding to the optimal temperature of plas-
tic deformation of Bochvar-Tamman, as well as the range of plasticity effects manifestation (0.3-0.8)Ty,, ana-
lytically determined on the basis of the same dependence. The temperature dependence of the share of liquid-
mobile particles analytically reveals a maximum in the range of the liquid state, which indicates the com-
plexity of this state under the influence of the opposite effect of the dependence for crystal-mobile and va-
por-mobile particles [13].

The entropy of mixing of all three energy classes of chaotic particles is characterized by a maximum in
the area of the substances boiling point, which indicates a unique variety of possibilities for the implementa-
tion of the most complex heterogeneous processes under terrestrial conditions at atmospheric pressure, which
ultimately ensured the self-organization of life.

This invariant is illustrated, like all of the above, using barium as an example. The relationship between
the maximum entropy of mixing of crm-, lgm- and vm-particles with the boiling point is established for sim-
ple substances and is highly adequate.
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B.I1. Mansmmes, A.M. Makamesa, JI.A. bekbaeBa

3aTTBIH KaTThl, CYHBIK KOHE a3 TOPI3Ai KyliHAeri KpUCTAJLI KO3FAJIATbIH,
CYHBIK KO3FAJIATHIH KoHe 0y KO3FAJIaThIH peTci3 06 IeKTepaAin
apaKaTbIHACHIHbIH HHBAPUAHTTAPBI

Maxkana aBTopiapsl bosbiMaH OeJLEKTepiHIH XAOTHUKAJBIK KO3FAIBICHIHBIH KHHCTHKAJIBIK 3HEPrHACHI
OOHBIHIIIA TapayblHA HETI3AEIreH peTci3 OemmeKTep TYKbIphIMAaMachIH jkacarad. by Oery 3aTThIH KaTThI,
CYHBIK JKOHE Ta3 TOPi3/i KYIIepiH KpUCTaIUT KO3FANIaThIH, CYIbIK JKoHe Oy KO3FaJIaThIH JICTl aTalaThiH SHEPTHs
OemmekTepiMeH OipikTipyre MYMKiHmIK Oepenmi. MyHpmaii perci3 OemmeKkTepHiH YJeCTepiHiH KaThIHACH
3aTThIH Oenrini 6ip arperaTTsk KYHiH aHbIKTaiapl. Ke3 kenreH Temneparypaa 6apiblK KOMOWHAIMSIIApJaFsl
OCHI OeNIIeKTep/IiH YIecTepiHiH KOCBIHABICH Oipre TeH. 3epTTeyiep 3aTThIH XaOTHKAJIBIK KypaMBIHBIH 0achIM
HeTi3ri acepiMeH Kyiiepre camajibl KHE CaHJABIK Taulay >Kyprizyre OONaTBIHIBIFBIH KOPCETTi. 3aTThIH
Oenrimi Gip TypiHE Toyelnci3 jkoHe (PHU3HMKa-XUMUSIIBIK KaCHETTePiHE CoKec KeNeTiH KyiuiepaiH Oenrimi Oip
3aHABUTBIKTaphl TaObUIABL. KapamaifbiM 3aTTap YIIiH Xa0THKAJBIK O6IIeKTepaiH OapibIK YII SHEPreTHKAIIBIK
KJIAChIHBIH JKBUDKY OBHTpomusichl ecentenai. O 3aTTapAplH  KailHQy —TeMmepaTypachl —aiiMarblHza
MaKCUMyMMEH CHIaTTanafbl. Byl MYMKiHAIK aTMocepanblk KbICHIM Ke3iHIE JXep JKaraailblHIarbl eH
KYpZeTi TeTeporeHai MpoIecTepAi Ky3ere acelpy YIIIH MYMKIHIIKTEpAiH epeKIle SPTYPIUIriH KOpceTKeH,
HOTIDKECIH/IE OCBI MYMKIHAIKTEpPMEH ©3/[iriHeH YHBIMIACTHIPEIIATHIH OMIpAi KaMTaMackl3 eTei.

Kinm ce30ep: BONbIMaHHBIH Tapalybl, KHHETHKAJBIK JHEPIHS, PETCi3 OOMNIIeKTep, SHTPOMHS, HONIIK
KakpIHIay, Oapuii, 0aNKy TeMIepaTypachl, KaifHay TeMIepaTypachl.

B.I1. Mansies, A.M. Makamesa, JI.A. bexOaeBa

NHuBapuaHThl COOTHOIIEHNH KPUCTALIONOABUKHBIX, "KUIKOMOABUKHBIX
U MAPONOJABUKHBIX Xa0TH3UPOBAHHBIX YACTHII B TBEPAOM, KUTKOM
U ra3o00pa3HOM COCTOSIHMSIX BellecTBa

ABTOpaMH cTaThM pa3pa0oTaHa KOHIENIMS XAOTH3WPOBAaHHBIX YaCTHI], OCHOBaHHAs Ha paclpeleleHun
BbonbiMaHa 0 KUHETHUYECKOI HEPIUU Xa0TUUECKOT o ABMKEHUs yacTull. JlaHHOe pacrpeiesieHue 03BoJIseT
00BETMHUTH TBEPJOE, KHUIKOE U Ta3000pa3sHOE COCTOSHUS BELIECTBA C ITOMOIIbIO SHEPTeTHUECKUX YacTHIl,
Ha3BaHHBIX KPUCTAJIIONOABHXHBIMH, KUIKOIIOABHKHBIMU U MApONOIBIKHBIMU. COOTHOILIEHHE A0JIEH TaKuX
XaO0THU3UPOBAHHBIX YaCTHI] OIPEeIsIeT arperaTHoe CocTosHAe BemtecTBa. CyMMa oJel 3THX JacTHUI] BO BCEX
COYeTaHHAX MpH M000H TeMmIepaTtype paBHa eauHuIe. VcciaenoBaHus MOKa3all, YTO MOXHO IMPOBOAUTH Ka-
YECTBEHHBIH M KOJMYECTBEHHBIN aHAIN3 COCTOSHUH C IIPHOPUTETHBIM 0a30BBIM BIIMSIHUEM XaOTH3UPOBAHHON
COCTaBJISIONIEH BemiecTBa. bpimm 0OHApy>KeHBI Onpe ieNIeHHbIe 3aKOHOMEPHOCTH COCTOSTHHI, He3aBHCHUMBIE OT
KOHKPETHOTO BHJIa BEIIECTBA M COTJIACyIOIHecs ¢ GU3NKO-XUMHUYECKUMH cBoiicTBamu. Kpome Toro, aBTopa-
MH pacCUMTaHa 3HTPONHUS CMEIICHHs BCEX TPEX 3HEPreTUYECKUX KJIACCOB XAOTHU3HPOBAaHHBIX YACTHI[ AJIS
npocThIX BemiecTB. OHa XapaKTepH3yeTcsi MAaKCHMyMOM B O0JIACTH TOYKH KHIICHHSI BEIIECTB. DTa OCOOCH-
HOCTb CBHJETEIBCTBYET 00 YHUKAJIBHOM Pa3HOOOpa3Hu BOSMOXHOCTEH ISl peaM3aliii CIIOXKHEHIINX rere-
POTEHHBIX MPOIECCOB B 3EMHBIX YCIOBHAX HMPH aTMOC(HEPHOM JaBIECHUH, KOTOPBHIMU, B KOHEUYHOM HTOTE,
obecreynnach CaMOOPTraHU3aNus KUZHH.

Kniouesvie cnosa: pactipenenenne bonbpiMana, KHHETHYECKast SHEPTHS, XaOTU3UPOBAHHBIE YACTHUIBI, SHTPO-
v, HyJIeBOE NpUOIIKeHne, Oapuii, TeMIrepaTypa IIaBIeHHs, TeMIIepaTypa KAIICHHUSL.
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