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QSAR tool for optimization of nitrobenzamide pharmacophore
for antitubercular activity

Tuberculosis (TB) is a leading cause of death worldwide from a single infectious agent, Mycobacterium tu-
berculosis (MTB), especially due to the development of resistant strains and its co-infections in HIV. Quanti-
tative-structure activity relationship (QSAR) studies aid rapid drug discovery. In this work, 2D and 3D QSAR
studies were carried out on a series of nitrobenzamide derivatives to design newer analogues for antitubercu-
lar activity. 2D QSAR was performed using MLR on a data set showing antitubercular activity. The
3D-QSAR studies were performed by KNN-MFA using simulated annealing variable selection method. Align-
ment of given set of molecules was carried out by the template-based alignment method and then was used to
build the 3D-QSAR model. Robustness and predictive ability of the models were evaluated by using various tra-
ditional validating parameters. Different physiochemical, alignment-based, topological, electrostatic, and steric
descriptors were generated, which indicated the key structural requirements for optimizing the pharmacophore
for better antitubercular activity. For 2D QSAR, the best statistical model was generated using SA-MLR method
(r?=0.892, g% = 0.819) while 3D QSAR model was derived using the SA KNN method (g? = 0.722). The posi-
tively contributing descriptors can be incorporated to design new chemical entities for future study.

Keywords: tuberculosis, 2D QSAR, 3D QSAR, nitrobenzamide, SA-MLR, SA-kNN, pharmacophore, an-
titubercular activity.

Introduction

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB). It has
emerged as a global health menace due to drug resistance strains, such as multidrug-resistant, totally drug-
resistant, and extremely drug-resistant TB. Also, its co-existence with HIVV makes it even more challenging
to treat [1]. Moreover, COVID-19 pandemic threatens the progress in reducing the global burden of TB dis-
ease [2]. This necessitates rapid drug development in this area. One way to achieve this is by applying statis-
tical analytical methods as quantitative structure—activity relationship (QSAR). This technique is valuable as
it helps to narrow down a library of molecules to effective potential inhibitors by predicting biological activi-
ties [3-5]. In the present study, 2D and 3D QSAR studies were carried out on nitrobenzamide derivatives to
optimise the pharmacophore for antitubercular activity.

Experimental

All QSAR studies were performed using V-Life sciences MDS Version 4.3 [6].

Data set: A data set of 24 nitrobenzamide derivatives with chemical and biological variation processing
antitubercular activity reported by Wang H. et al. was used for the QSAR study (Table 1) [7]. Biological ac-
tivity expressed as Minimum Inhibitory concentration (MIC, uM) values was converted into pMIC values
[PMIC = -log (MIC)]. QSAR structures of the compounds were drawn using the ChemDraw tool and con-
verted into 3D structures (.mol2) using the V life MDS software. Geometry optimisation of the structures
was carried out using the standard Merck Molecular Force Field (MMFF).
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Table 1
Data set of 24 nitrobenzamide derivatives for the QSAR study
Compound No. Y- Z- MIC(uM) pMIC
1 5-F - 1.357 -0.599
2* 5-Br - 0.459 0.055
3 : —§-NC>—QF 0.060 0.903
4 - -F 0.120 -0.574
5 - -CFs 0.059 -0.201
6 - -OCFs3 0.033 -1.346
7 5-NO;, - 0.059 0.886
8 5-Br - 0.944 -0.288
9 - §—<:>7 0.094 0.632
10 . —~C>—cu 0.030 1.146
11 —/\:>— 0.030 1.189
F
12 - —NC>< 0.108 0.591
F
13* - — s 0.059 0.835
14 - —NQOF 0.119 0.603
15 . —Q@ 0.452 0.040
16 - —m 0.235 0.361
17 - —m 0.480 0.042
18 —QO 1.255 10.361
19 : —{ O 0.210 0.359
B
20 - — ) 0.178 0.446
* ~ <)
21 - 0.233 0.366
20% . —{ )~ )— 0.491 0.033
23 - —{ ) 0.973 -0.250
__/
24 - 7N© 2> ) 0.143 0.542
*Test set
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Generation of training and test set: Entire data set of 24 compounds was distributed as training set
(19 molecules) and test set (5 molecules) using the sphere exclusion method. The selection of the test com-
pounds was made based on their biological activity, structural diversity, and activity distribution plot.
Unicolumn statistics for both training and test set was applied to check rightness of selection criteria for
training and test set molecules. The mean of the test set was higher than the mean in the training set, indicat-
ing the presence of relatively more active molecules than inactive ones. A higher standard deviation in the
training set indicated a wide distribution of the molecules' activity compared to the test set molecules.

QSAR studies: 2D and 3D QSAR were computed using various statistical models. Robustness and pre-
dictive ability of the models was evaluated by using various traditional validating parameters for internal val-
idation—correlation coefficient (r?), cross-validated correlation coefficient (q?) and external validation
(pred_r?) [3,4,5,8-11].

2D QSAR studies: V life MDS software can calculate various 2D descriptors such as physicochemical
and alignment-based. While calculating the physicochemical descriptors, dipole moment, distance-based
topological indices, electrostatic, hydrophobic descriptors were deselected as they are 3D descriptors. A mo-
lecular descriptor based upon a counting statistic of the topological distance matrix is used in QSAR studies.
Thus Baumann alignment independent topological descriptors with attributes 2, T, C, N, O, F, S, and Cl,
were selected. These topological descriptors provide an idea about the desired 2D pharmacophoric features.
Correlation matrix was applied to select the predominant descriptors influencing the antitubercular activity of
the analogues taking each descriptor as independent and pMIC as dependent variable. Descriptors showing
the highest correlation with pMIC were selected for generation of the QSAR model using multiple linear re-
gression (MLR), Partial Least Square (PLS), Principal component regression (PCR). Regression methods
were performed by selecting Set Cross-Correlation Limit as 0.5, Number of variables in final Equation as 10,
Term Selection criteria as r?. Various models were generated and were analysed using the fitness plot, con-
tribution plot, and statistical parameter compliance.

3D QSAR Studies: The 3D-QSAR studies were performed by KNN-MFA using simulated annealing
variable selection method. KNN-MFA method requires suitable alignment of a given set of molecules. After
optimization, alignment was carried out by the template-based alignment method. This was followed by gen-
erating common rectangular grid around the molecules (Figure 1). The resulting set of aligned molecules was
then used to build 3D-QSAR models and information generated was used to predict activity of those de-
signed molecules that have a similar template or set of atoms. Steric, hydrophobic and electrostatic interac-
tion energies were computed at the lattice points of the grid.

O,N

R

Figure 1. Common template used and alignment of nitrobenzamide derivatives

Results and Discussion

2D QSAR: Amongst the various 2D QSAR methods developed, SA-MLR method demonstrated the best

results as given in Equation (1):
pMIC =-0.2140 (£0.0249) (T_T_F _5) +0.3571 (£0.0455) (SssCH2count) —

—0.2377 (£0.0455) (SaasCE-index) 1)

This model produced a correlation coefficient r>=0.8922, cross-validated correlation coefficient

0?=0.8197 and pred_r?=0.7356 (Table 2). The observed and predicted activities of the test and training sets

are shown in Table 3. Contribution plot of descriptors is depicted in Figure 2. This plot describes the extent

(percentage) to which different descriptors influence biological activity. Also, the plot of actual versus pre-

dicted activity of training set and test set is shown in Figure 3. Positive descriptors favor biological activity,

62 Bulletin of the Karaganda University



QSAR tool for optimization of nitrobenzamide ...

whereas negative descriptors would have a detrimental effect on biological activity. Hence while designing
new chemical entities, positively contributing descriptors are favored, and negative descriptors should be
avoided. In the present study, the positively contributing descriptors SssCH2count indicated that a total
number of —CH. group connected with two single bonds would increase activity. Negatively contributing
descriptors T_T_F_5 indicated that any atom separated from fluorine by five bond distance would result in
decrease of activity. Negative Saas CE-index indicated electrotopological state indices for a number of car-
bon atoms connected with one single bond along with two aromatic bonds would decrease the antitubercular
activity.

Table 2
Statistical parameters of 2D-QSAR model
Statistical parameter Regression method SA-MLR
N 19
r? 0.892
q? 0.819
Pred r? 0.735
Pred r’e 0.336
F test 0.336
s 0.225
0 se 0.292
Best Rand r? 0.447
Best Rand g 0.227
Z score R? 8.317
Z score Q? 5.618
Alpha Rand R? 0.000
Alpha Rand Q? 0.000
TTF5
Descriptors SssCH2count
SaasCE-index
-0.214(+0.024)
Coefficients 0.357(£0.045)
-0.237(+0.045)
Table 3

Observed, predicted and residual values for training set and test set

Compound no. Observed activity Pre@ic_ted Res_id_ual
(pMIC) activity activity
1 2 3 4

1 -0.599 0.049 -0.648
2 0.055 -0.507 0.562
3 0.903 0.514 0.388
4* -0.574 -0.521 -0.052
5 -0.201 0.493 0.694
6 -1.346 0.0507 -1.853
7 0.886 0.814 0.071
8 -0.288 -0.371 0.083
9 0.632 0.496 0.139
10 1.146 0.915 0.231
11 1.189 0.958 0.230
12 0.591 0.664 -0.072
13* 0.835 -0.156 0.991
14 0.603 0.559 0.442
15 0.040 0.593 -0.553
16 0.361 0.456 -0.094
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Continuation of Table 3

1 3 4
17 0.042 0.335 -0.293
18 -0.361 0.226 -0.587
19 0.359 0.443 -0.084
20 0.446 0.411 0.035
21%* 0.366 0.226 0.139
22% 0.033 -0.452 0.485
23 -0.250 0.336 -0.586
24 0.542 0.522 0.02
RMSE 0.558
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Figure 2. Contribution of descriptors

Figure 3. Plot of actual versus predicted Activity of training set

and test set of SA-MLR method

3D QSAR: In continuation to 2D QSAR studies, 3D QSAR SA kNN MFA models were also commuted.
The statistical results generated by SA-kNN MFA methods are depicted in Table 4. The g2, pred r?, pred r?
se and K values of model were found to be statistically significant hence model was considered for designing
of NCE's. The 3D data point descriptors were generated in rectangular grid according to the range of contri-
bution mentioned in parenthesis using SA kKNN-MFA are depicted in Figure 4. Experimental and predicted
activities are shown in Table 5. In model, residuals obtained are near to zero indicating a good predicting
ability of the model. The plots of observed vs. predicted activity for the optimal cross-validated kKNN-QSAR

model are depicted in Figure 5.

Table 4

Statistical results of 3D QSAR generated by SA kKNN-MFA methods

64

Statistical Parameters SA-KNN MFA
k Nearest Neighbour 4
N 19
Degree of freedom 14
¢ 0.722
q’ se 0.330
pred r? 0.879
pred r’se 0.227
E 671-0.0228 -0.0198
Contributing descriptors SE—_9;‘ g 0 ?(1)2‘2% 430%6;4
S 901 -0.8031 -0.4015

Bulletin of the Karaganda University



QSAR tool for optimization of nitrobenzamide ...

To visualise the information contained in the 3D-QSAR models, grid was generated. The electrostatic
and steric descriptors are shown in Figure 4. Points generated in SA KNN-MFA 3D-QSAR model were
E_671 (-0.0228-0.0198), S_943(-6.0242-3.0694), E_580 (1.1626 4.0054), S_901(-0.8031 -0.4015) i.e., elec-
trostatic and steric interaction at lattice points 671,580 and 943,901, respectively. Negative values in electro-
static field descriptors indicated that negative electronic potential is required to increase activity and more
electronegative substituent is preferred on the aryl group. Similarly, negative values of steric descriptors re-
vealed that less sterically bulky aryl groups are favorable for maximum activity.

o
0
-
=
b
0
k=
o

-1.0 0.5 0,0 05 1,.-'|
Actual

| Traning T-.-:t|

Figure 5. Plot of actual versus predicted activity of training set and test set of SA-KNN MFA

Table 5
Experimental and predicted activities

L Model
Compound no. | Actual activity (pMIC) Predicted activity | Residual activity

1 2 3 4

1 -0.599 -0.609 0.010
2 0.055 -0.529 0.585
3* 0.903 0.780 0.122
4 -0.574 -0.625 0.151
5 -0.201 -0.215 0.014
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Continuation of Table 5

1 2 3 4
6 -1.346 -1.001 -0.344
7 0.886 0.165 0.720
8 -0.288 0.529 -0.817
9 0.632 0.448 0.184
10* 1.146 1.137 0.009
11 1.189 1.132 0.057
12 0.591 -0.184 0.775
13 0.835 1.239 -0.404
14 0.603 0.443 0.160
15 0.040 0.586 -0.546
16 0.361 0.588 -0.227
17 0.042 0.259 -0.217
18 -0.361 -0.648 0.287
19* 0.359 0.043 0.315
20 0.446 0.187 0.258
21* 0.366 0.189 0.176
22* 0.0330 -0.140 0.173
23 -0.250 -1.179 0.929
24 0.542 -0.195 0.737
RMSE 0.438

Conclusions

In order to optimise pharmacophore for antitubercular activity, a data set of nitrobenzamide derivatives
was selected to perform QSAR studies. 2D and 3D QSAR were performed using MLR and SA KNN meth-
ods, respectively. Statistically significant models were used for interpretation. The study indicated a positive
contribution of 2D descriptors (SssCH2count), 3D descriptors (more electronegative substituent on the aryl
group and less sterically bulky aryl groups) are favorable for maximum antitubercular activity (Fig. 6). Con-
sidering different descriptors generated from 2D and 3D QSAR, new chemical entities can be designed for

further studies.

2D QSAR
Positively contibuting
SssCH2 Count

Negativeley contributing
TTFS5

Saas CE-index

3D QSAR

Z position-Sterically less
bulky and Electronegative
substituent increases activity:

O,N

NO,

Figure 6. Optimised Pharmacophore
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TyOepkyJe3rekapcbl 0eJICeHALTIK YIIIH HUTPOOeH3aMu/1
papmaxodopacbinbiH QSAR oHTaAHIAHABIPYBI

Ty6epkyne3 (TB) Oykin amemme Mycobacterium tuberculosis (MTB) cusiktel MHGMDEKUMSUTBIK areHTTEH,
acipece Te3iMI IITaMIApAbIH AaMybiHa %oHe OoHBIH AV TB-MeH Gipre >KyKThIpybIHa OaiiJIaHBICTHI JKYKITaIbl
KO3IBIPFHIIIBIHAH OJIIMHIH Heri3ri ce6ebi 0onbIm TaObuTambl. XUMHUSIIBIK KOCBUTBICTAPIBIH KYPBUIBIMBI MEH
oencenpiniri (QSAR) apacsiHmarbl OailIaHBICTHI CAaHIBIK 3€PTTEY JKaHa MPETapaTThIH 1aMy MPOIECIH endyip
KpUigaMaatyra kemektecedi. Ochl JKYMbICTa TyOepKyJe3rekapchl OeiceHainiri 0ap kaHa aHamortapbl
a3ipiey MakcaThlHIa HUTPOOEH3aMHJl TYBIHABUIAPBIHBIH OipkaTapbiHa 2D xene 3D QSAR-3eprreynep
xyprizinai. 2D QSAR TybGepkynesrekapcsl OeNCEHIUTIKTI KOPCETETIH MaJiMeTTep JKMBIHTBIFbIHAa MLR
oniciH KonmaHy apkpuisl skacanabl. 3D-QSAR seprreynepi kKNN-MFA anropuTMid KojmaHsll, KYHZipy
MPOIIECiH MOJENBACHTIH alHBIMATBUIAPIBl TaHAAY OIici apKbUIBI OpPBIHAANABL. bepiareH Moiexymamap
JKUBIHTBIFBIH TETiCTEY MIa0JIOHFa HETi3MIeNITeH TETiCTey alrOpUTMi apKBUIBI XKYpri3inmi, comaH keiin 3D-
QSAR MopzeniH Kypy YIIiH KOJIIaHBUIABL. MoaenbaepIaid CeHIMIUTIT MeH 0oinkay KaOlleTi opTypati A9CTYpaIi
TeKcepy MmapameTpiiepiH KONJaHa OTHIPHIN OaramaHbl. TeHecTipyre HeTi3nenreH dpTypii Gpu3nKa-XUMUSITBIK,
TOIOJIOTUSIIBIK, YJIEKTPOCTATUKAJIBIK JKOHE CTEPUIIB/II AECKPUIITOPIIAP aHBIKTANIBI, oJlap TyOepKyie3rekapchl
Gencenpiniri jkorapputaraH (apmMako(Opasl OHTAWIAHABIPY YINIH HETi3ri KYpPBUIBIMIBIK TajanTapbl
kepcerTi. 2D QSAR ymliH eH KaKchl CTaTHCTHKAIBIK Moaedh SA-MLR (12 = 0.892, g? = 0.819) oxicin
KoJIIaHa OTBIPHIT xkacansl, an 3D gsar Mogeni SA KNN (q? = 0.722) anropiT™iH KOJIJIaHa OTHIPBI aTbIHIBL.
AHBIKTaIFaH JeCKPUITOPIAp/bl Opi KapaifFbl 3epTTeysep/e KaHa XMMHSUIBIK TYBIHIBUIAP/BI d3ipiey YIUiH
naiiananyra 0omasl.

Kinm ce30ep: Tybepkyne3, 2D QSAR, 3D QSAR, nurpobenszamuza, SA-MLR, SA-kNN, dapmakodop,
TyOepKye3rekapchl OeICeHILTIK.
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QSAR-onTumu3anun papmaxodopa HUTPoOOGeH3aMHUIA
JJIs1 MPOTUBOTY0EPKYJIE€3HOI AKTUBHOCTH

TyOepkyne3 siBiseTcss Bexylied NMPUIMHON CMEPTH BO BCEM MHUpPE OT TaKOTO MH(EKIMOHHOTO areHTa, Kak
Mycobacterium tuberculosis, 0oco6eHHO BCIeACTBHE Pa3BUTHS PE3UCTEHTHBIX MITAMMOB M €r0 KOMH(EKINH
npu BUY. KonnvecTBeHHBIE HCCIEIOBAaHHUA B3aHMMOCBS3H CTPYKTYpHI U akTUBHOCTH (QSAR) xummdeckux
COEIMHEHUH TTOMOTal0T 3HAUUTEIBHO YCKOPUTH Mpoliecc pa3paboTKu HOBOTO JeKapcTBa. B crathe mposene-
Hbl 2D u 3D QSAR-uccnenoBanus psaa Npou3BOJHBIX HUTPOOEH3aMuUAa ¢ IEIbI0 pa3padOTKH HOBBIX aHAJO-
TOB C MPOTHBOTYOEPKYIIe3HON akTHBHOCTHIO. 2D QSAR ObL1 BEIIONHEH ¢ HcToNb30BaHueM MLR-meTona Ha
Habope JMaHHBIX, IOKa3bIBAIOIINX IIPOTHBOTYOEPKYJIe3HyI0 akTHBHOCTE. MccnenoBanus 3D-QSAR Obun BEI-
nonHeHs! ¢ nomoinsio kKNN-MFA-anroputma ¢ ucnos30BaHAEM MeTOa BHIOOPA IepEeMEHHbIX, MOACIUPY-
IOIINX OTXKWT. BrIpaBHUBaHME 3a1aHHOrO HAOOpa MOJIEKYJI IIPOBOIIIOCH C IOMOIINBIO AJITOPHTMA BEIPaBHH-
BaHWS Ha OCHOBE IIA0JIOHA, a 3aTeM HCIIOJB30BaJOCh s mocTpoeHnst moxenu 3D-QSAR. HanexHocts u
MPOTHOCTHYECKask CIIOCOOHOCTh MOJIeNIEH OLIEHUBATIHCH C TOMOIIBIO PA3INYHBIX TPAJULUOHHBIX TapaMETPOB
HPOBEPKU. BbUIN BBINEICHBI Pa3IuyHbIe (PU3NKO-XUMHUYECKHE, OCHOBAHHbBIC Ha BIPAaBHHUBAHUH, TOMOJIOTHYC-
CKHE, JIEKTPOCTATHYECKHE U CTEPUUECKUE IECKPUNTOPHI, KOTOPHIE YKa3bIBaIH Ha KIIIOUEBBIE CTPYKTYypHBIE
TpeGoBaHMs A1 ONTUMH3aLuU (apMakodopa ¢ MOBBIICHHOH MPOTHBOTYOEPKYIE3HOH aKTHBHOCTBIO. s
2D QSAR Hawy4inas cTaTHCTHYECKash MOJECNb ObLIa CO3/1aHa C UCMoNb3oBaHHeM Metona SA-MLR (r2 =
0,892, g? = 0,819), Torna kax mozens 3D QSAR 6buia monmydena ¢ mpuMenenneM anropurma SA KNN (g2 =
0,722). BbIsABICHHBIC JCCKPUITOPHI MOTYT OBITH MOJIC3HBI Ul Pa3pabOTKH HOBBIX XHMHYECKHX
MPOU3BOJIHBIX B TAJIGHEHIIINX HCCIIEJOBAHMUSIX.

Knroueeswie cnosa: tybepkyines, 2D QSAR, 3D QSAR, uurpobensamua, SA-MLR, SA-KNN, ¢papmakodop,
HPOTHBOTYOEPKyIIe3Has! aKTHBHOCTb.
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