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Study of the Effect of Temperature on the Properties of Gelatin-Chitosan Cryogels

Cryopolymers are a class of 3D structural polymers, which are widely used in tissue engineering. Using cryo-
polymerization technology, physical cross-linked macroporous cryogels based on gelatin and chitosan were
synthesized at —12 °C, —30 °C and —70 °C for application as carriers for cell cultures. The presence of func-
tional groups was investigated by IR spectroscopy. The effect of temperature on physicochemical properties,
such as pore volume, density, gel fraction and biodegradation of cryogels, was studied. The obtained results
showed that the pore volume (up to 87.6 %) and the gel fraction (up to 80 %) increased, and the density
(0.078 %) and pore sizes of cryogels decreased as the temperature decreased from —12 °C to —70 °C. The
study of biodegradation showed that polymers had a more degradable property in relation to saline solution
with an increase in the cryopolymerization temperature. The results of electron microscopy showed the po-
rous morphology of the surfaces of the synthesized cryogels. The average pore size varied from 150 to 300
um. The toxicity test showed that aqueous extracts from cryogels did not have a highly toxic effect on mesen-
chymal stem cells in the adipose rats tissue, since the cell viability was 55-75 %.
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Introduction

Cryogels obtained by the cryotropic gelation process/cryopolymerization are macroporous hydrogels
with a well-developed system of interconnected pores, high swelling capacities, and large surface areas [1-
5]. Professor V.I. Lozinsky made a huge contribution to the development of the cryopolymerization concept
[6-10]. Cryogels can be used in controlled drug delivery, carriers for cell immobilization, sensors, biosepara-
tion, purification, and tissue engineering [11, 12]. Common cryogel compositions include natural polymers,
such as gelatin, chitosan, alginate, hyaluronic acid and synthetic acrylamide-based polymers and poly (lactic
acid) (PLA), poly (lactic-co-glycolide) (PLGA), poly(e-caprolactone) (PCL) [13, 14].

There are chemical and physical cross-linked cryogels. Crosslinkers, such as glutaraldehyde, N-(3-
dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide are often used in the
creation of chemically cross-linked cryogels. Physically cross-linked cryogels are formed through the inter-
action of intermolecular sub-chains in macromolecules [15-17].

To date, there are many studies on the synthesis of polymers based on gelatin and/or chitosan using
chemical cross-linking agents [18-25]. There are also studies on the synthesis of polyelectrolyte polymers of
gelatin and chitosan [26-30]. However, there is no data on the synthesis of physical cross-linked Gel:Ch
scaffolds by cryopolymerization without the participation of cross-linking agents. The synthesis of such pol-
ymers is advantageous since no chemical cross-linking agents are used that can be toxic to cells or tissues.

Pinto Ramos et al. derived biopolymer films from chitosan, gelatin and Ch/Gel mixture in salt solutions
(NaCl, CaCl, and Na,SO4) with varying concentrations and ion charges. The authors investigated the poly-
electrolyte and polyampholytic properties of the films so that in the future it would be possible to create
biopolymer films using them in ionic media [31]. A team of scientists synthesized 3D chitosan scaffolds that,
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in combination with bFGF, facilitated the neural differentiation of dental pulp stem cells (DPSCs). As shown
by the results, DPSCs adhered successfully and grew well on the surface of chitosan scaffolds. According to
the authors, the transplantation of DPSCs/chitosan-scaffold+bFGF might be a secure and effective method of
treating spinal cord injury and other neuronal diseases [32, 33].

The main goal of this work is to obtain macroporous scaffolds as a base and carrier for mesenchymal
stem cells (MSC). To achieve this goal, we first synthesized and characterized novel physical cross-linked
scaffolds based on gelatin (Gel) and chitosan (Ch) by cryopolymerization. This research is of great im-
portance in tissue engineering, as it provides a new understanding of new effective ways of obtaining biopol-
ymers without the use of chemicals that are toxic to cells and tissues. Thus, the obtained cryogels can be used
as carriers of stem cells and can be used in the treatment of bone damage.

Experimental

Preparation and characterization of cryogels

The GelCh cryogels were prepared by dissolving a gelatin (0.4 % wi/v) and a chitosan (0.2 % w/v) in
1 % acetic acid solution. The acidity of the solution was then adjusted using 1 M of NaOH to pH =5 to pro-
tonate amine groups of Ch. After the solution was transferred in syringes and incubated for —12°C
(GelCh12), —30 °C (GelCh30) and —70 °C (GelCh70) for 24 h. After thawing at room temperature, the thus
formed physically cross-linked polymers were washed with Milli-Q water and PBS (pH = 7.4) and lyophi-
lized using Martin Christ Beta 2-8 LDplus freeze dryer. GelCh cryogels were stored in a dark place at room
temperature for further use.

Gel fractions, the degree of degradation, and the density of cryogels were determined according to a
well-known method [15].

The gel percent was calculated by the formula [34]:

9%) = Mo
Gel (%) m %100, Q)
where Wy, and W; are weight of the swollen dry gel and a sample, which was not immersed in water but di-
rectly freeze-dried.

Cryogels were weighed (W,) and transferred to 50 ml tubes filled with sterile 0.1M PBS (pH 7.4). The
tubes were incubated at 37 °C for 8 weeks, during which the solution was refreshed twice in a week. At pre-
determined times, cryogel samples were taken from the solution and washed with deionized water. After
freeze-drying overnight and weighing (W) the degree of degradation was determined by the following for-
mula [15, 18]:
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The density of cryogels was evaluated from the mass-to-volume ratio of dry cryogels. The apparent

density (p) was obtained from the equation [15, 35]:
w
P=—""T""7-"_ . °
nx(D/2) xH

where W is the weight of the cryogel, D is the diameter, and H is the thickness of polymers.

The pore volume of the cryogels was estimated from the uptake of ethanol into the pores. Ethanol is a
non-solvent for the cryogels and it easily penetrates into the pores. The measurements were carried out by

immersing dry cryogel specimens with a mass of Wp into absolute ethanol for 1 h and then recording their
final mass Ws. The pore volume (PV) was calculated by applying the following formula [15, 36]:

@)

PV (%)= (We=Wo) 160, (4)
WS
The measurements were performed in triplicate and the average value was found.
The cryogels were lyophilized and the Fourier-transform infrared spectra (FTIR) (Nicolet iS 10, Ther-
mo Fisher Scientific) of these lyophilized samples were recorded in the wavelength range of 4000-400 cm.
The morphology of dried cryogels was observed using a scanning electron microscope (SEM, Auriga
Crossbeam 540, Carl Zeiss) after coating with gold 5 nm.
MTT assay
The cultivation of rat adipose-derived MSC (ADMSC) and MTT assay were obtained as previously de-
scribed [15]. In this study outbred male Wistar rats weighing 280-330 grams were used. The study was car-
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ried out according to the guidelines of the Declaration of Helsinki and approved by the Local Ethics Com-
mittee of the National Center for Biotechnology (number NCB-04-2020).

For the statistical analysis, all the physical, chemical, and biological experiments on cryogel samples
were performed in triplicate. All the experimental values were expressed in the form of mean + standard er-

ror and the limit of experimental error of each test was + 5 %, which had been considered as statistically sig-
nificant.

Results and Discussion

Ch contains amine groups and exhibits the properties of polyelectrolytes [37]. Gel, consisting of nega-
tive carboxyl and positive amine groups, shows the properties of polyampholytes [38]. The formation of the
3D macroporous structure of GelCh cryogels occurs due to the interaction of negatively charged carboxyl
groups (—COOH) of gelatin and positively charged amino groups (—NH.) of chitosan, which form a polyelec-
trolyte interaction between the macromolecules chains (Fig. 1).
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Figure 1. Scheme of the cryogels formation
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Figure 2. FTIR spectra of GelChCS cryogels

The spectrum of cryogels illustrates a band in the range of 3000-3600 cm™, which belongs to the
stretching vibrations of the O—-H and N-H functional group (amide A) that is involved in the intramolecular
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hydrogen bond between chitosan and gelatin molecules. The bands at 2800-2900 cm are due to several
symmetric and asymmetric stretching vibrations of C-H. The bands at 1650 cm™ refer to CO and CN amide
I. The spectra at 1535 cm™ refer to bending vibrations of NH groups and stretching vibrations of CN groups
(amide I1). The absorption of the spectrum in the 1243 cm™ range belongs to stretching vibrations of
CN-groups (amide I11). The troughs at 1065 cm are due to stretching vibrations of C-O groups. The bands
at 887 and 675 cm™ are related to the vibrations of C-H and N-H groups (Fig. 2).

GelCh cryogels were synthesized by dissolving gelatin and chitosan in acetic acid using cryogelation
technology at —12 °C, —30 °C and —70 °C without using any chemical crosslinkers (Table 1).

Table 1
Summary properties of GelCh cryogels
Samples | T,°C | Gel percent (%) Density (g/ml) Pore volume (%)
GelCh12 -12 73+1 0.095+0.005 84.6+3
GelCh30 =30 79+3 0.085+0.006 86.5+4
GelCh70 -70 80+1 0.078+0.005 87.6+2

According to Table 1, the yield of the gel fraction for cryogels is the maximum one with decreasing
temperature. This is because that, at a lower temperature, tightly cross-linked polymer networks are formed,
in which the sol (soluble part) fraction is present to a lesser extent. Compared to the GelCh70 sample in the
GelCh12 sample, the yield of the gel and sol fractions is 80 and 73 %, respectively. This may also be due to
the hydrophilic properties of gelatin and the looser structure of the polymer. As the results show, the porosity
of scaffolds decreases with an increase in their density. The synthesized cryogels have a high pore volume of
85-88 %. The more porous the polymer, the better it is for the penetration of fluids and cells. Biodegradation
in PBS solution over 8 weeks was studied to confirm the cryogels biocompatibility (Fig. 3).
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Figure 3. Biodegradation behavior of the cryogels in PBS at 37 °C for 8 weeks

The in vitro decomposition rate of cryogels was 67 % (GelChl12), 58 % (GelCh30) and 55 %
(GelCh70). Compared to covalently bonded cryogels, the synthesized cryogels demonstrated a high percent-
age of degradation of the polymer matrix. Upon biodegradation, cryogel macromolecules (long polymer
chains) break down into low molecules (oligomeric units), which dissolve in the solvent and lead to weight
loss. The presence of water-soluble gelatin gives additional hydrophilicity to polymers, in which monomer
chains are rapidly hydrolyzed. The degree of biodegradation decreases with decreasing temperature, since
cryogels are not linked by a covalent bond. All cryogels exhibit a high degree of decomposition. The degra-
dation of cryogels is influenced by its surface morphology and pore size (Fig. 4).
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a— GelCh12; b — GelCh30; ¢ — GelCh70
Figure 4. SEM of cryogels

The surface morphology of the synthesized polymers was investigated by the SEM method. As can be
seen from Figure 4, the surface of the synthesized cryogels is changed significantly under the influence of
temperature. The surface of cryogels has a porous structure with unevenly distributed pores. As the tempera-
ture decreases, the formation of more closed pores is observed. The pore size of cryogels varies from 150 to
300 um. Comparing cryogels, one can notice a tendency that GelCh30 has a more uniform pore distribution,
while GelCh12 has a random distribution. This is possibly due to self-assembly between gelatin and chi-
tosan. The resulting pore sizes can be sufficient for cell cultivation, since the biggest pore size accommo-
dates more cells that can agglomerate. Thus, the pores provide intercellular contact between cells, showing
higher markers of chondrogenesis, and can be used for the treatment of bone regeneration and in tissue engi-
neering in general.

To determine the cytotoxicity of cryogels, an MTT assay was conducted using primary culture of rat
ADMSC (Fig. 5).
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Figure 5. Effects of extracts of cryogels on cell viability of rat ADMSC
presented as percentage of cell viability versus concentration of the extracts (*p value < 0.05)

The extracts from cryogels exhibit a weak toxic effect on rat ADMSC and display more than 55 % of
cell viability after treatment with concentration of 1.25 mg/ml. The viability of rat ADMSC cells at a concen-
tration of 0.156 mg/ml with cryogel extracts showed the highest cell viability (up to 75 %). Thus, MTT assay
revealed that GelCh12, GelCh30 and GelCh70 cryogels are biocompatible and suitable for further applica-
tions in in vivo studies.

Conclusions

Macroporous cryogels based on gelatin and chitosan were synthesized using the cryopolymerization
method at various temperatures (—12, —30 and —70 °C) without chemical cross-linking agents. The formation
of the 3D macroporous structure of GelCh cryogels occurs due to the interaction of negatively charged car-
boxyl groups (-COOH) of gelatin and positively charged amino groups (-NH>) of chitosan, which form a
polyelectrolyte interaction between the macromolecules chains. The functional groups of cryogels were iden-
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tified by IR spectroscopy. The effect of temperature on physicochemical properties of cryogels, namely
GelCh12, GelCh30 and GelCh70, was studied. Thus, the pore volume (up to 87.6 %) and the gel fraction (up
to 80 %) increase and the density (0.078 %) and the pore size of cryogels decrease with decreasing tempera-
ture. SEM results showed a macroporous surface of the cryogels. Comparing cryogels, one can notice a ten-
dency that GelCh30 has a more uniform pore distribution, while GelCh12 has a random distribution. Since
cryogels are composed of natural polymers and obtained without the use of chemical cross-linking agents,
degradation products are expected not to cause immune rejection problems during implantation, which
makes such materials potentially useful for tissue engineering.
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Study of the effect of temperature on the properties ...

I' K. Kynaitoepren, M.C. XKynycosa

Kpuoreabaepain Kacuerrepine TeMnepaTypaHbIH dCePiH 3epTTey

Kpuononmumepiiep nereHimi3 — TIHIIK HHXKEHEPHAIa KeHIHEH KOJIIaHBUIATEIH 3D KYpBUIBIMIBIK ITOJIAMeEpIIep
Ki1acel. KpuomonmMmeprieHy TEXHOJOTHACHIHBIH KOMETIMEH JKacylla JaKbUIIApBIHBIH HETi3l peTiHzge
naipanany ymin —12 °C, —30 °C xene —70 °C TemnepaTypa/a XeJIaTHH MEH XHTO3aH HeTi3iH/er] QU3HKAaIbIK
TITIITeH MaKpOKEYeKTi Kpuorensaep cuaTe3nenni. OyHkiumonanabslk Tontapasy 6oiysr MK-crekrpockonms
ofici apKbUIBI aHBIKTAJABL. TemIepaTypaHblH KpPHOTEIbIACPAiH (PHU3UKa-XUMHSIIBIK KacHeTTepiHe ocepi
3epTTENl, MBICANBl, KEYEKTepP KOJEeMi, THIFBI3IBIFBI, I'ellb (PAKLUACH KoHE OHOIerpagauusachl. AJBIHFAH
HoTikenep Temmeparypa —12 °C-tan —70 °C-ka zaeilin TeMeHJiereH caiiblH KeyekTepAiH keiemi (87,6 %-ra
JeiiiH) sxoHe renbaik GppakuusHbid (80 %-ra meiiiH) apTaThIHBIH, al KPHOTENbACp KEYCKTePiHiH OIIeMi jKoHe
TeIFBBIBIFEL (0,078 %-Te neiiin) kimripeleTiHiH kepceTTi. buomerpamanusHbl 3epTTey KpHOMOIUMEpPICHY
TeMIIepaTypachIHbIH KOFapbUIaybIMEH IOJIMMEpPJIEPIiH TY3 epiTiHAiciHe KaTHICTHI BIABIPAHTHIH KacueTi 6ap
eKEeHIH KOpCeTTi. DIEKTPOHABIK MHKPOCKOINSIHBIH HOTIDKENepl CHHTE3JENreH KPHOTEeNbISpAiH OeTTepiHiH
keyekTi MopdororusicelH kepcerti. KeyekriH oprama wmemmepi 150-mern 300 MxM-Te neliH e3repai.
VBITTBUIBIK CHIHAarbl KPUOTENbIEPACH aJbIHFAH CYJbl CHIFBIHIBUIAPABIH ereyKYHPBIKTapIbIH Maiiibl
tinaepingeri MJK-re sxorapel yBITTBI ocep CTIEHTIHIH KOpCeTTi, 6HTKeHi xacyma eMipimenmiri 55-75 %
KYpasibl.

Kinm ce30ep: kpuorenb, >KelIaTHH, XWTO3aH, OMOMOJMMEp, YBITTHI eMmec, OHoyiiaeciMai, KeyeKTi, TiH
WH)KEHEPHSCHIL.

I' K. Kynaitoepren, M.C. XKynycosa

I/ICC.JIeZ[OBaHI/Ie BJ/IMAAHUSA TEMIIEPATYPbI Ha CBOMCTBA KpHOFEJIeﬁ

Kpuonomumepsr — 310 Kinacc 3D CTPYKTYPHBIX MOJMMEPOB, KOTOPHIC IIHMPOKO HCIONB3YIOTCS B TKAHEBOM
umkeHepud. C MOMOIIBI0 TEXHOJIOTHH KPHOMOJIMMEPH3ALMK CHHTE3UPOBAHb! (PH3UYECKH CIIUTBIC MAKPOIO-
pHCTBIe KPHOTeNld Ha OCHOBe jkenatuHa u xuro3aHa npu —12 °C, —30 °C u —70 °C anst npuMeHeHHsT B Kade-
CTBE OCHOBBI KIETOYHBIX KyibTyp. Hamnume (GyHKIMOHAJIBHBIX IPyNn uHccienoBaHo Meroxom HK-
CreKTpocKonuH. M3yueHo BIMSHHE TeMIIepaTypbl Ha (PU3MKO-XMMHYECKHE CBOMCTBA, TaKHE Kak 00beM Iop,
IUIOTHOCTB, TelieBast (pakiys 1 Ouoaerpagarus kpuorenei. [1omydeHHbIe pe3ybTaThl IOKA3bIBAIOT, YTO TIPH
noHmkeHnn temuneparypsl ot —12 °C no —70 °C yBenmmuuBatotcsi 06beMbl op (1o 87,6 %) u reneBoit dpak-
n (o 80 %) u ymenblatores mwiotHocts (0,078 %) u pasmep mop kpuoreneit. McenenoBanue Gromerpana-
MU TI0Ka3aJl, YTO MPH MOBBILICHUH TEMIICPATypbl KPHOMOJIMMEPH3AINH MOJIUMEPBI 00aaroT Gosiee aerpa-
JMPYEMbIM CBOWCTBOM II0 OTHOIIEHHIO K COJIEBOMY PacTBOPY. Pe3ysbTaThl 3IEKTPOHHONW MHKPOCKOIIMHU MO-
Ka3aJIu MOPHUCTYI0 MOP(OJIOTHIO OBEPXHOCTEH CHHTE3MPOBAHHBIX KpHorenei. CpeHuid pa3Mep Hop Bapbu-
posaics ot 150 mo 300 Mxm. TecT Ha TOKCHYHOCTD MTOKa3ajl, YTO BOJHBIC BBITSDKKH M3 KPHOTEINIEH HEe OKa3bl-
BaIOT BEICOKOTOKCcHYecKoro aeicTBus Ha MCK »HupoBoii TKaHU KpPBIC, TIOCKOJIBKY KH3HECTIOCOOHOCTh KIIETOK
cocrasisuia 55-75 %.

Kniouesvle cnosa: KpHOTeNb, JKENATHH, XUTO3aH, OHOIOJMMEp, HETOKCHUYHBINA, OHOCOBMECTHUMBIH, MOPH-
CTOCTh, TKAHEBasl MH)KEHEPHUS.
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