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Synthesis and Microwave Absorption Properties
of NigsZngsFe,04/Cl Composite Coated with Polyaniline
within Paraffin Wax Matrix

Ternary composites of polyaniline/NigsZngsFe,04/carbonyl iron (PANI/F/CI) are prepared via two stages.
Firstly, NigsZngsFe,0, is prepared using a sol-gel method. After that, PANI/F/CI composites are prepared us-
ing an in-situ polymerization technique of PANI in the existence of the NigsZngsFe,O, and Cl. X-ray
diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, Ultraviolet-visible (UV-vis) spectros-
copy, and Thermogravimetric analysis (TGA) are utilized to characterize samples. The morphology of the
powders is investigated by Scanning electron microscope (SEM). The electromagnetic interference (EMI)
shielding and microwave absorption (MA) properties are measured in the frequency band of 8.8-12 GHz to
investigate the microwave characterization. The results refer those microwave absorption properties are relat-
ed to the absorber thickness and the loading ratio of the absorber within a paraffin matrix. Minimal reflection
loss of —30.8 dB at the matching frequency (f,,) of 10.3 GHz and the absorption bandwidth under —10 dB
(BW._1048) Of 2.8 GHz for 3.4 mm thickness with a surface density (SD) of 3.38 kg/m? are noticed for the
PANI/F/CI composite sample. The maximum shielding efficiency (SE) of 30.12 dB at 11.0 GHz for 3.2 mm
thickness is observed for the PANI/F/CI composite sample.

Keywords: polyaniline, carbonyl iron, composites, lightweight microwave absorber, reflection loss, absorp-
tion bandwidth, shielding efficiency, matching frequency.

Introduction

Recent environmental pollution issues are appearing because of the quick evolution of electronic devic-
es, involving smartphones, laptops, and intelligent devices. Electronic apparatuses emit undesirable EM
waves, generating electromagnetic interference between various electronic apparatuses with a negative effect
on their performance. Consequently, the disposal of EM waves resulting from EMI effectively is so im-
portant both for public protection security and electronic safety. Generally, there are two kinds of materials
to absorb EM waves: firstly, magnetic loss materials such as hexagonal ferrites, spinel ferrites, and carbonyl
iron, secondly, dielectric loss materials such as conductive polymers (e.g., polyaniline, polypyrrole) and car-
bonaceous materials (e.g., carbon black, activated carbon, carbon fibers, graphene) which have played a sig-
nificant role for high-frequency EM wave absorption. Nevertheless, the drawbacks involving elevated densi-
ty, low reflection absorption, and narrow wideband have hugely limited conventional loss materials’ worka-
ble benefits for EM wave absorption [1, 2]. In recent years, microwave absorption composites based on
polyaniline, ferrite, and carbonyl iron have obtained significant attention due to their excellent electrical and
ferrimagnetic characteristics. Polyaniline-based composites have pulled in major attention for microwave
absorption lately. Polyaniline is usually used to fit the requirements of high-effective microwave attenuation
materials because of its superior characteristics, for example, low density, high permittivity, unique electron-
ic conductivity, etc. Polyaniline has a unique place in the band of elevated-frequency microwave absorption
materials (MAMS). Furthermore, spinel ferrites and carbonyl iron have excellent MA characteristics due to
their unique magnetic characteristics. NiZn ferrites and carbonyl iron are considered suitable materials for
high-frequency implementations [3, 4]. When NiZn ferrite and carbonyl iron are mixed with Polyaniline, the
MA characteristics of the resultant composite are anticipated to enhance. According to this, PANI/NiZn fer-
rite microwave absorbers in the frequency range of 2-40 GHz were successfully prepared by Ting et al. [3].
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The absorbers are prepared by dispersing PANI/NiZn ferrite nanocomposites with a weight ratio of 67% w/w
within an epoxy resin matrix. The results indicated that by increasing polyaniline content in NiZn ferrite, a
wide absorption frequency range could be obtained. Didehban et al. have designed microwave absorbers in
the frequency band of 8-12 GHz based on Nizn ferrite-PANI (35:65) nanocomposites. The absorbers are
formed by dispersing PANI/NiZn ferrite within an epoxy resin matrix of 20 w/w. The results have shown
that the absorber had a RL i, of —20 dB at 9.1 GHz and the absorption BW 345 Was 0.5 GHz for 2 mm thick-
ness [5]. Wang et al. have designed absorbers in the frequency band of 2-8 GHz based on NizZn Fer-
rite/PANI (1:3) nanocomposites. The absorbers are formed by dispersing PANI/NiZn ferrite within a paraffin
matrix of 75 w/w. The absorbers were papered by the in-situ polymerization method. The results displayed
that RL i, was —32 dB at 9.5 GHz and the absorption B.W 14 45 Was 3.8 GHz [6]. Wang et al. have reported
the MA properties of a one-dimensional uniform PANI/NiZn ferrite hybrid nanorods within a paraffin matrix
of 70 % wi/w in the frequency range of 2-18 GHz. They have found that the absorbers had broadband, and
minimal reflection loss, where the results have indicated that the absorber had a RLy, of —27.5 dB at
6.2 GHz and the absorption BW_;oqg Was 3 GHz for 2 mm thickness [7]. Wang et al. have designed absorbers
in the frequency band of 2-18 GHz based on NizZn Ferrite/PANI nanocomposites. The absorbers were pa-
pered by hydrothermal method. The results displayed that RL i, was —17 dB at 11.1 GHz and the absorption
BW, g was 5 GHz [8]. Ma et al. have reported the MA properties of PANI/C0qs5ZnosFe 04
nanocomposite. The MA properties were studied in the 8.2-26.5 GHz range. The absorbers were synthesized
by the in-situ polymerization technique. They have found that the absorbers had broadband, and minimal
reflection loss, where the results have indicated that the absorber had a RL,, of —39.9 dB at 22.4 GHz and
the absorption BW_jpgs Was 5 GHz for 2 mm thickness [9].

The aim of the study is to design lightweight and wide band absorbers with loading ratios not exceeding
35% with enhanced RL based on PANI/F/CI nanocomposites. The ferrite is prepared by the sol-gel method.
Then, the aniline monomer is polymerized by the in-situ polymerization technique in the presence of NiZn
ferrite and carbonyl iron. The prepared samples are characterized by XRD, FTIR spectroscopy, UV-vis spec-
troscopy and TGA. The morphologies of the ferrite and its nanocomposites are identified using SEM. The
EMI shielding and MA properties are studied by measuring the minimal reflection loss, absorption band-
width under -10 dB, and shielding efficiency of the absorbers in the frequency band of 8.8-12 GHz to
achieve functional characterization. To the best of the authors’ knowledge, the optimization of the perfor-
mance of the current PANI/F/CI nanocomposites in terms of lightweight and wide bandwidth has not been
reported before.

Experimental

Chemicals: Sodium dodecyl sulfate (SDS, 92.2 % purity), ammonium persulfate (APS, 95.3 % purity),
nickel (1) nitrate hexahydrate (Ni(NOs),-6H,0, 98.3 % purity), zinc nitrate hexahydrate (Zn(NO3),-6 H,0,
98.7% purity), and iron (I11) nitrate nonahydrate (Fe(NO3)s-9H,0, 98.2 % purity) were purchased from
TRADING COMPANY ANT, Russia. As well, Aniline monomer (CgHsNH,, 99.5 % purity), Ammonium
hydroxide (NH,OH, 99.8 % purity), Citric acid (C¢HgO-, 99.0% purity) were purchased from Sigma Aldrich
Company, Germany. On the other hand, carbonyl iron (Cl, 99.6% purity) was purchased from Cabot Norit
Company, Netherland.

Instruments used: A powder X-ray diffractometer (XRD, Rigaku Miniflex 600, Cu-Ka) is utilized for
defining the crystal structures of the powders. Fourier Transform IR (FTIR) spectra are recorded on a Perkin
Elmer spectrum 65 FTIR spectrometer in the range of 400-4000 cm ™. The UV-vis absorption spectra of the
samples (dispersed in dimethylformamide (DMF)) are recorded using the LAMBDA 365 UV-vis spectro-
photometer in the range of 250-900 nm. Thermogravimetric analysis (TGA) is done utilizing a thermal ana-
lyzer (NETZSCH 449F3A-0372-M) under a nitrogen atmosphere, from room temperature to 1000 °C under
constant heating rate of 10 °C/min. A scanning electron microscope (FEI Quanta 200 3D) is utilized for de-
fining the morphology of the powders. Finally, energy-dispersive X-ray spectroscopy (EDX, Quanta 200 3D)
is utilized to know the chemical composition of prepared samples.

The microwave absorption properties of the prepared samples are calculated by using the horn antenna
connected to an oscilloscope (AKTAKOM ADS-2221M).

Methodology

1. Preparation of PANI/F/CI

Ferrite (NipsZnosFe.0,) nanoparticles were prepared by a sol-gel method as illustrated in the following
literature [10-14]. On the other hand, carbonyl iron powder was milled for 12 h at 300 rpm via the grinding
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balls to obtain fine powders. NiZn ferrite and carbonyl iron were coated with polyaniline via the in-situ
polymerization technique. Firstly, 6 g (90 % F and 10 % CI) was added to 100 ml distilled water under me-
chanical stirring at a speed of 250 rpm for 30 minutes. 3 g sodium dodecyl sulfate (SDS) and aniline were
added to the solution while keeping mechanical stirring for 1 h. After that, 1 M HCI solution 80 mL was
added to the solution under stirring for 1 h. Finally, 8.5 g APS was dissolved in 100 ml of an aqueous solu-
tion which was utilized as an oxidizing agent and added slowly dropwise into the solution to start the
polymerization. The polymerization was allowed to proceed for 6 h with stirring in an ice bath. The resulting
composite was filtered and washed many times with distilled water and ethanol, and then dried for 8 h in the
furnace at 70 °C. The weight ratio of aniline/(F-CI) (1/1) was synthesized. Pure polyaniline was synthesized
in a similar way but without NiZn ferrite and carbonyl iron solution for comparison purposes.

2. Preparation of samples for measuring the MA and EMI shielding properties

Microwave absorption and electromagnetic interference shielding properties of the samples were esti-
mated with the free-space technique. According to this, 30-35 % w/w of the coated composites were dis-
persed in a paraffin wax matrix by heating and stirring for 15 min. Thereafter, the single-layer samples were
molded to the dimensions of 100x100 mm to measure RL and SE in the frequency band of 8.8—12 GHz.

Results and Discussion

XRD patterns

Figure 1 demonstrates the XRD patterns of NigsZngsFe,O4, Cl, PANI/F/CI composite and PANI. For
the NipsZngsFe,0, pattern, six diffraction peaks are noticed at 26 values of 30.04°, 35.44°, 43.12°, 53.68°,
57.18°, and 62.14°, which conforms to (hkl) planes of (220), (311), (400), (422), (511) and (440), respective-
ly. The ideal spinel structure is noticed by the peaks of NiZn ferrite [15]. The XRD pattern of NigsZngsFe,0,
is matched with the reference XRD patterns (JCPDS, PDF no. 08-0234). The size of the NizZn ferrite grain
(26 =35.44°) has been evaluated with Scherrer’s equation, D = 0.9 A/ cos8, where D is the crystallite size
(nm), A is the X-ray wavelength, B is the bandwidth at half-height, and 0 is the diffraction angle in degree.
The calculated crystallite size of the NiZn ferrite is 27.6 nm. On the other hand, for the carbonyl iron pattern,
three characteristic peaks are noticed at 20 values of 44.61°, 64.92° and 82.33°, which conform to (hkl)
planes of (100), (200), and (211), respectively. The XRD pattern of carbonyl iron resembles crystallites in
which the sample mainly contains a-Fe phase [16]. All the observed peaks of CI are matched with the stand-
ard XRD pattern (JCPDS, PDF no. 06-0696). The characteristic peaks of the PANI/F/CI composite show
matching the characteristic peaks of NigsZngsFe,0,4as mentioned above. The XRD pattern of the pure PANI
(Figure 1) displays an amorphous structure with two characteristic peaks at 20.22° and 25.36° which are at-
tributed to the periodicity parallel to the polymer chains of PANI [17,18]. The XRD patterns of the
PANI/F/CI composite (Figure 1) display crystalline peaks because of the existence of NiZn ferrite in this
composite. The two characteristic peaks of the PANI disappeared due to the NigsZngsFe,O4 nanoparticles
[19, 20].
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Figure 1. XRD patterns of NigsZngsFe,O4, Cl, PANI/F/CI composite and pure PANI
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FTIR spectra

Figure 2 shows the FTIR spectra of the NigsZngsFe,O4, Cl, PANI/F/CI composite and PANI. For the
NigsZnosFe,O4 nanoparticles, two peaks at 563.1 cm™tand 430.2 cm™ are referring to the stretching vibration
of (Fe—0), which emphasizes the formation of the metal-oxygen in ferrite-based [21]. In addition to that, the
peak at 1630.4 cm™ in NigsZnesFe,04, and Cl is referring to C=0 stretching vibration, and the peaks at
2348 cm™ and 3452 cm™ are referring to O—H stretching vibration [22, 23]. On the other hand, the character-
istic peaks of PANI and PANI/F/CI composite are similar and they exhibited peaks at 1568 cm™, 1489 cm™,
1298 cm™, 1238 cm™, 1113 cm™, and 800 cm™ [24, 25]. The characteristic peaks at 1568 and 1489 cm™ are
attributed to the C=N and C=C stretching modes of vibration for the quinonoid and benzenoid units of the
polymer. The characteristic peaks at 1298 and 1238 cm™ are related to N-H bending and asymmetric C—H
stretching of the benzenoid ring, respectively. Finally, the characteristic peaks at 1113 cm™ and 800 cm™ are
ascribed to the vibration mode of N=Q=N and the out-of-plane stretching vibration of C-H, respectively
[19, 20]. In addition to that, the characteristic peak at 563.1 cm™ of PANI/F/CI composite shows matching
the characteristic peak of NigsZnosFe,O4 as mentioned above. This indicates the stretching vibration of
(Fe-0), which confirms the formation of the metal-oxygen in PANI/F/CI.
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Figure 2. FTIR spectra of NigsZngosFe.04 Cl, PANI/F/CI composite and pure PANI

UV-visible spectra

Figure 3 illustrates the UV-visible spectrum of the PANI and PANI/F/CI composite. For PANI, two
characteristic peaks at around 302 nm and 629 nm are observed. The characteristic peak around 302 nm is
ascribed to m—m* transition of the benzenoid ring and the characteristic peak around 629 nm is attributed to
the benzenoid-to-quinoid excitonic transition [17, 26]. It can be seen that the characteristic peaks of
PANI/F/CI composite show a clear red shift of 7 nm, as compared with that of polyaniline. The two charac-
teristic peaks show the presence of PANI on the surface of NigsZn,sFe,O4 and carbonyl iron. These results
may refer to the o—x interaction among NigsZngsFe,O4, carbonyl iron and polyaniline backbone, which leads
to the energy of the antibonding orbital decrease, the energy of the m—n* transition of the benzenoid and
quinoid ring decreases, so the characteristic peaks of the composite show a red shift [26].
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Figure 3. UV spectra of PANI and PANI/F/CI composite.
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TGA analysis

Figure 4 shows the TGA curves of the NigsZngsFe,04, PANI/F/CI composite and PANI. For the
NigsZnosFe,O4 nanoparticles, no mass loss was noticed over the whole temperature range. PANI loses
4.87 % of its weight in the range of 110-130 °C because of the evaporation of moisture in the PANI. The
thermal decomposition of the PANI is shown in the range of 230-1000 °C and has a big weight loss of
65.12 %. On the other hand, PANI/F/CI composite loses about 2.21 % of its weight in the range of 110—
130 °C which is due to the evaporation of moisture in the composite. The thermal decomposition of the
PANI/F/CI composite is shown in the range of 240-870 °C and has a big weight loss of 46.28 %.

100

80 H
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—_—F
_ e PANI
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260 I 460 I 660 I 860 I 1000

Temperature(°C)
Figure 4. TGA thermograms of Nigs5ZngsFe,O4, PANI/F/CI composite and pure PANI

Morphology investigations

Figure 5 designates the morphology of the NigsZngsFe;O4, Cl, PANI and PANI/F/CI composite. The
agglomerated spherical particles of NiZn ferrite and the spherical particles of carbonyl iron (Figure 5a, b) are
observed with average diameters to be ranging between 27-63 nm and 0.2-2.4 um, respectively. While a
combination of rough surface sheets and short rods connected to each other of PANI is noticed (Figure 5c¢),
distributed in the range between 60—220 nm. On the other hand, after coating with polyaniline, a continued
overlayer of PANI is created on the CI and NigsZnosFe,O, nanoparticles’ surface (Figure 5d).

Figure 5. SEM images of (a) NigsZngsFe,O4, (b) Cl, (c) PANI and (d) PANI/F/CI composite
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Energy-dispersive X-ray spectroscopy (EDX) analysis

Figure 6 and Table 1 present the energy-dispersive X-ray spectroscopy (EDX) analysis of
NigsZnosFe,O4, PANI and PANI/F/CI composite. The presence of C, O, Cl, S, Fe, Ni, Al, and Zn elements in
the NiZn ferrite EDX spectrum is noticed. On the other hand, the presence of C, O, S and Cl elements in the
PANI EDX spectrum is found. The presence of elemental Cl and S can be attributed to doping agents’ hy-
drochloric acid and sodium dodecyl sulfate. Finally, the presence of C, O, Cl, S, Fe, Zn, Al, and Ni elements
in the PANI/F/CI composite EDX spectrum is observed.
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Figure 6. EDX of (a) NigsZngsFe,O4, (b) PANI and (c) PANI/F/CI composite
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Table 1
EDX element composition of NiysZngsFe,O,4, PANI and PANI/F/CI composite

Element C Cl (0] S Al Fe Ni Zn
Ferrite (wt %) 3.30 | 013 | 19.26 | 0.02 | 0.41 | 53.02 | 13.04 | 10.82
PANI (wt %) 8452 | 045 | 1181 | 3.17 | 0.05 0 0 0
PANI/F/CI (wt %) 51.72 | 051 | 1923 | 2.02 | 0.08 | 17.15| 532 | 3.97

MA and EMI shielding properties

MA and EMI shielding properties of the prepared samples are estimated with the free-space technique
as illustrated in the following literature [27-31]. SE is calculated for the EMI shielding by applying the equa-
tion (1) [32]:

SE (dB) = SE, +SE, + SE,, =10 Iog%, )
where p, and p, — the incident power and transmitted power of the EM waves, respectively.

It is significant to note that the multiple reflection loss ( SE,, ) can be ignored if the absorption shielding
(SE, ) of EMI shielding material is higher than 10 dB and equation (1) then can be rewritten as [32]:

SE (dB) = SE, +SE, =10 log P @)
Pr
The shielding by reflection ( SE; ) is calculated for the EMI shielding by applying the equation (3):
SE, (dB)=—10log(L— R):—10Iog(1— P ] . 3)
pin
The shielding by absorption ( SE, ) is calculated by equation (4) [33, 34]:
T Pr
SE, (dB)=-10log| —— |= —10log| ————— |, 4
A( ) g(l_R) g(pin_prefj ( )

where p,, — the reflected power of the EM waves.
On the other hand, RL is calculated for the MA by applying the equation (5) [33, 34]:

RI(dB)=10log 1. (5)
ref
Influence of the incorporation of NigsZngsFe,O4, Cl and PANI on the RL and the SE
EMI shielding and MA properties of the NigsZngsFe,O4, Cl, PANI and PANI/F/CI composite are stud-
ied. The results of this investigation are exhibited in Figures 7, 8 and Table 2. Figures 7, 8 illustrate the
changing of the RL and SE as a function of the EM wave frequency for NigsZngsFe;04, CI, PANI and
PANI/F/CI composite. The absorption of samples with specified thickness at 3.2 mm is molded to measure
RL and SE in the frequency band of 8.8-12.0 GHz. As illustrated in Figures 7, 8, a weak reflection loss and
low shielding efficiency for the NigsZnosFe,O4and ClI are noticed. On the other hand, for the pure PANI, the
reflection loss is in the range between 6.6-8.5 dB and the shielding efficiency is in the range between 9.8—
12.9 dB. Furthermore, when PANI is incorporated with ferrite which is mixed with carbonyl iron, the reflec-
tion loss increases to —25.8 dB at 11.3 GHz for PANI/F/CI composite and the shielding efficiency increases
to 30.12 dB at 11.0 GHz. Table 2 shows the reasonable surface density (SD) of all the prepared absorbers. As
a result, one can notice the impact of incorporating NigsZngsFe,O4 and Cl (magnetic loss materials) and
PANI (dielectric loss material) on the EMI and MA properties of the prepared absorber. This incorporation
leads to an effective and low thickness absorber with a wide BW_jo4g [35]. Figure 9 shows the SEr and SEa
of the NigsZngsFe,O4, Cl, PANI and PANI/F/CI composite with a thickness of 3.2 mm at the frequency of
11.0 GHz.
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Figure 7. RL curves of NigsZngsFe,04, Cl, PANI and PANI/F/CI composite at 3.2 mm thickness
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Table 2
MA behavior of NigsZngsFe,O4, Cl, PANI and PANI/F/CI composite at 3.2 mm thickness

Samples RLin (0B) [ fn (GHZ) [BW1048 (GHZ)[ SD (kg/m?)
NigsZnosFe;0. 46 - _ 4.56
Cl 65 - - 5.21
PANI 85 - - 2.25
PANI/FICI —25.7 113 26 3.31

Influence of the PANI/F/CI composite thickness and loading ratio on the RL
Figure 10 illustrates the RL of PANI/F/CI composite with various thicknesses (3.2, 3.4, 3.6 mm) at the
various weight ratios of the absorber within a paraffin matrix (30, 35 % w/w). It can be seen that the RL at-
tenuation peaks of samples moved to lower frequencies with increasing sample thickness. This phenomenon
may be defined by the quarter-wavelength (A/4) cancellation model, as shown in equation (6) [36—38]:
c

ty=——— ©)
At Ik e

where ¢ and || are the modulus of the measured complex relative permittivity (e, ) and permeability
(1, ) at matching frequency (f), respectively; c is the velocity of light.

It can be noticed from equation (6) that the f,, is inversely proportionate to the thickness of an absorber.
On the other hand, one can notice the minimum reflection loss moves gradually to a lower frequency with
the increase in weight ratios of the absorber within a paraffin matrix (Figure 10). Furthermore, Table 3 shows
the PANI/F/CI composites have reasonable surface density, ranging from 3.31 to 3.40 kg/m? and wide
bandwidth extending from 2.5 to 3.0 GHz. One can conclude that optimal absorption can be accomplished by
modifying the absorber thickness and the loading ratio of the absorber within a paraffin matrix.
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Figure 10. RL curves of PANI/F/CI composite with various thicknesses (3.2, 3.4, 3.6 mm)
at the various weight ratios of the absorber within a paraffin matrix (a) 30 % and (b) 35 %

Table 3

MA behavior of PANI/F/CI composite at various thicknesses
and various loading ratios within a paraffin matrix

Loading ratio % | t (mm) |RLpin (dB) | f (GHZ) | BW.104s (GHZ)| SD (kg/m?)
3.2 —25.7 11.3 2.6 331
30 % 3.4 -28.5 10.8 3.0 3.35
3.6 —26.8 9.8 2.9 3.37
3.2 —28.6 10.8 2.5 3.33
35% 3.4 -30.8 10.3 2.8 3.38
3.6 —28.4 9.3 2.6 3.40
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To evaluate the beneficial impact of adding CI to the PANI/F on the microwave properties of the mi-
crowave absorber, Table 4 shows a comparison of MA properties of some lately reported PANI/NiZn ferrite
absorbers with various loading ratios of the composites in the host matrix. Compared to PANI/NiZn ferrite
absorbers reported by Ting et al. [3], Wang et al. and Wang et al. [7, 8], the current nanocomposite absorbers
as-presented in this study display better MA in the frequency range of 8-12 GHz, lower loading ratio of the
absorbers in the host matrix and relatively wider absorption bandwidth. However, the microwave absorber
lately designed by Wang et al. [6] has comparable results with the current absorbers in terms of bandwidths
and reflection losses, the lower loading ratios of the current absorbers are still an advantage. On the other
hand, Didehban et al. designed absorbers with a low loading ratio similar to the ratio used in this study [5].
Although, the microwave properties of the current composites possess better reflection losses and larger
bandwidths comparable with the result presented by Didehban et al. [5].

Table 4

Comparison of MA behavior of the current composites with similar absorbers in the literature

Specinen (el et L et | com | R 8) [ 1061 | 6w 010

. 30 3.4 —28.5 10.8 3.0
PANI/F/CI/ Paraffin (current work) 35 34 308 103 28
NiZn ferrite-PANI(50:50)/Epoxy [3] 67 2.00 -14 11.0 2.6
NiZn ferrite-PANI(35:65)/Epoxy [5] 20 2.00 -20 9.1 0.5
NiZn ferrite-PANI(1:3)/Paraffin [6] 75 3.50 -32 9.5 3.8
NiZn ferrite-PANI(2:1)/Paraffin [7] 70 2.00 -271.5 6.0 3.0
NiZn ferrite-PANI/Epoxy [8] 67 3.00 =17 11.1 2.8

These results prove that adding CI to the PANI/F has a beneficial role in enhancing the microwave
properties of the absorber: It becomes lighter with wide bandwidth.

Conclusions

In the current research, we succeeded in the preparation of wideband and lightweight PANI/F/CI ferrite
microwave absorbers with low loading ratios in paraffin wax 30-35 % w/w. The composites were structural-
ly characterized using X-ray diffractometry, FTIR spectroscopy, UV-vis spectroscopy, and TGA. The mor-
phology of the composites was investigated by scanning electron microscopy. The functional characteriza-
tion was accomplished by measuring the EMI shielding and MA properties. The results show that by ade-
guate control of the loading ratio and thickness of the absorber, one can tailor the design of a wideband and
lightweight absorber based on PANI/F/CI in the frequency band of 8.8-12 GHz. Minimal reflection loss of
—30.8 dB at the matching frequency of 10.3 GHz and the absorption bandwidth under —10 dB of 2.8 GHz for
3.4 mm thickness with a surface density of 3.38 kg/m? were noticed for the PANI/F/CI microwave absorber.
The maximum shielding efficiency of 30.12 dB at 11.0 GHz for 3.2 mm thickness was observed for the
PANI/F/CI microwave absorber.
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A. Xy6wu, A.A. Xapmenos, 1. Araccu, XK. T. baramaposa, C. Meip3anueBa, b.A. Kopibaes

IMapadunai 6anaypi3 MaTpUIachbIHAA MOJTHAHWINHMEH KanTaiaraH NigsZngsFe,0,/Cl
KOMIIO3MTIHiH CHHTE3i ’K9He MUKPOTOJKBIH/BI CiHIPY KacueTTepi

Tommannmun/NigsZng sFe,04/xapbonmn temipiniy ymrik kommosutrepi (PANI/F/CI) exi ke3eH apKbLIbI
nmasiamanael - angeived, NigsZngsFe,0, 3omb-rens omicimen; coman coH PANI/F/CI  kommo3uTrepi
NigsZngsFe,04 xone CI Gosran keszge PANI-HbIH in-situ monmmepiiey ofici KoJjmaHbUIFaH. YJriiepi
cunarray yurH peHtrenaik audpakromerpus (XRD — X-ray diffractometry), ®ypbe Ttypnenuaipy
uHQpake3eul  cnektpockonuscel  (FTIR  —  Fourier transform infrared), ymerpakynriH-kepiHeTin
CIIEKTPOCKOMHMACKL  JKoHe TepMorpaBumerpusiislk  Tanmmay (TGA —  Thermogravimetric  analysis)
naiananbuAbl. ¥HTAKTapAbIH MOP(OIOTHICH CKaHepieyIl 3JeKTpOHAbl MHukpockommeH (SEM —
Scanning electron microscope) seprrenreH. DiexTpoMarHuTTik kemeprimepai (EMI — electromagnetic
interference) kopray jxone MHKpOTONKBIHIBI KyTy (MA — microwave absorption) kacuerrepi 8,8—12 I'Tn
KUK~ WAma3oHbIHIA —emieHAl. HoTikenmep MHKpPOTONKBIHABI —CiHIpY KacwerTepi abcopOepiy
KaJIBIHJIBIFBIHA KOHE Mapa(UHIIK MaTpUlanarkl abcopOeplliH JKYKTeMe KaThbIHAChIHA OaIaHBICTBI €KEeHIH
kepcetTi. KansapiFsl 3,4 MM, OCTiHIH THIFBI3ABIFBI 3,38 kr/mM? Gonatein PANI/F/CI KOMIO3UTTIK yJrici
yurin 10,3 T'T coiikec sxwuimikre (f,) eH a3 kepi sxoranyst —30,8 ab xoHe sxyTy omars! yurin 2,8 T'T1 kesinae
—10 nb-nen (BW_1gqg) TOMEH OOMATHIHBI aHBIKTAIABL. 3,2 MM KaiablHAbIKTaFbl PANI/F/CI KOMIO3HUTTIK yiTici
yuid 11,0 I'T sxuinikre 30,12 1b MakcuMamIpl SKpaHIay THIMAUIITT OaiKaiabl.

Kinm ce30ep: monuaHwiInH, KapOOHWII TEMip, KOMIIO3UTTED, MIAFBUIBICY KOFAIYBI, a0COPOIMSIBIK KOJIAK
eHi.
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A. Houbi, A.A. Zharmenov et al.

A. Xyowu, A.A. Kapmenos, U. Ataccu, K.T. baramaposa, C. Msip3anueBa, b.A. Kapubaer

CHHTe3 H MUKPOBOJIHOBBIE MOIJIOIIA0IINE cBOlicTBa KoMmo3uTa NigsZNngsFe,0,4/Cl,
MOKPBITOT0 MOJUAHWINHOM B napa¢uHOBOMH MaTpuiie

Tpoitabie KoMmo3utsl nonuanuins/NigsZng sFe,04/kapoonuibhoe xenezo (PANI/F/CI) monydenst aByms
CTaJMsIMH: CHaYaja METOAOM 3011b—Tenb 6611 nomydeH NigsZngsFe,Oy, mocie 3Toro ObUT MONYYeH KOMIIO3UT
PANI/FICI ¢ ucrione3oBanuem texunonoruu nonumepusanuu PANI B npucyrcerBuu NigsZngsFe,04 u ClL. s
XapaKTepHCTHKN 00pa3IoB UCIOJIb30BATINCh PeHTreHOBCcKas audpakromerpus (XRD), nndpakpacHas crek-
Tpockomnust ¢ npeodpazoBanrem Dypoe (FTIR), crekrpockorus B yaprpaduonetoBoM u Buaumom (UV-vis)
CHEKTpax U TepMorpaBuMeTpudeckuii ananus (TGA). Mop¢onaorun mopomkoB ObUIH UCCIEIOBAHBI C TIOMO-
IIBI0 CKaHUPYIOIIETO 3JIEKTPOHHOro MHKpockoma (COM). ColcTBa SKpaHMPOBAHUS 3IEKTPOMAarHUTHBIX
MOMeX ¥ TOTJIONIEHHS MUKPOBOJIH M3MEPsUTUCE B TTosioce dactoT 8,8-12 I'T' uis uccneoBaHnsl MEKPOBOJI-
HOBBIX XapaKTepUCTHK. Pe3yabpTaTel OTHOCATCS K TEM CBOMCTBAM ITOTJIOIIEHHS] MUKPOBOJH, KOTOPEIE CBS3a-
HBl C TOJIIIMHOW IOTJIOTUTENST M KOI(PQUIMEHTOM 3arpy3Ku MOTJIOTHTENsl B napaduHoBoW matpuue. Jlis
KkoMmo3utHoro obpasua PANI/F/CI Geutn onpezenensl, yto Ha dacrore coracoBanus 10,3 T (f,) Munu-
MaJIbHBIE TIOTEpH Ha oTpaxeHue coctaBisiioT —30,8 nb u monoca mornomenus Hiwke —10 1b (BW_jo45) Ha
yacrore 2,8 ['Tu nnsa rommuus! 3,4 MM ¢ TOBEPXHOCTHOW MJIOTHOCTHIO 3,38 Kr/m>. s o6pasua KoMIo3uTa
PANI/F/CI ¢ TonumHo# 3,2 MM HaOroganack MakcuMainbHas 3¢ dexTuBHOCTh SkpanupoBanus 30,12 nb Ha
gacrote 11,0 I'Tx.

Knroueswvie cnosa: NOJIMaHUJIUH, Kap60HI/IJ'[BHOG JKEJIE30, KOMIIO3UTHI, IIOTEPU HA OTPAKCHUE, IIUPUHA ITOJI0-
ChbI ITIOTJIOICHUS.
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